首页> 外文期刊>Neurocomputing >A novel method for motor imagery EEG adaptive classification based biomimetic pattern recognition
【24h】

A novel method for motor imagery EEG adaptive classification based biomimetic pattern recognition

机译:基于仿生模式识别的运动图像脑电信号自适应分类的新方法

获取原文
获取原文并翻译 | 示例

摘要

The real on-line BC1 is indeed a hotspot at present whose performance however is limited by the problems of non-stationary etc. In this paper, a novel method for the adaptive classification of motor imagery EEC data based Biomimetic Pattern Recognition (BPR) through introducing three adaptive operators is proposed. Considering that the large amounts of labeled samples are difficult to get in the actual application, we also propose a novel unsupervised scheme based the adaptive classifier to solve this problem. Sufficient experiments are conducted on the datasets from previous Brain-Computer Interface Competitions and the actual on-line EEG data in adaptive scheme. The results demonstrate that the new algorithm is efficiency and robust compared with non-adaptive classifiers. Besides, a couple of analyses are made on the selection of parameters in the adaptive BPR, and some advice has been come up with about their selections.
机译:实际的在线BC1确实是目前的一个热点,但是其性能受到非平稳等问题的限制。提出了引入三个自适应算子。考虑到实际应用中难以获得大量的标记样本,我们还提出了一种基于自适应分类器的新型无监督方案来解决这一问题。对以前的脑机接口竞赛的数据集和自适应方案中的实际在线EEG数据进行了充分的实验。结果表明,与非自适应分类器相比,该算法具有较高的效率和鲁棒性。此外,对自适应BPR中的参数选择进行了一些分析,并就其选择提出了一些建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号