首页> 外文期刊>Neurocomputing >A simple computational model for image retrieval with weighted multifeatures based on orthogonal polynomials and genetic algorithm
【24h】

A simple computational model for image retrieval with weighted multifeatures based on orthogonal polynomials and genetic algorithm

机译:基于正交多项式和遗传算法的具有加权多功能特征的图像检索简单计算模型

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a simple and new image retrieval method with weighted multifeature set based on multiresolution enhanced orthogonal polynomials model and genetic algorithm. In the proposed method, initially the orthogonal polynomials model coefficients are computed and reordered into multiresolution subband like structure. Then the statistical, directional, perceptual and invariant texture, shape and color features are directly extracted from the subband coefficients. The extracted texture, shape and color features are integrated into linear multifeature set and the significance of each feature in the multifeature set is determined by assigning appropriate weight. This paper also proposes a method to compute the optimized weight for each feature in the integrated linear multifeature multi feature set using genetic algorithm. Then the obtained optimized weight is multiplied with the corresponding features in the multifeature set and the weighted Manhattan distance metric is used for retrieving similar images. The efficiency of the proposed method is experimented on the standard subset of Corel and Caltech database images. The performance of the proposed method is compared with other existing retrieval methods such as Haar wavelet and Contourlet Transform based retrieval schemes. The proposed method yields high average recall and precision of 92.6% and 71% for Corel database and 90.5% and 72.3% of Caltech database images when compared with other existing methods.
机译:提出了一种基于多分辨率增强正交多项式模型和遗传算法的加权多功能特征图像检索方法。在提出的方法中,首先计算正交多项式模型系数,并将其重新排序为多分辨率子带状结构。然后直接从子带系数中提取统计,方向,感知和不变的纹理,形状和颜色特征。提取的纹理,形状和颜色特征被集成到线性多特征集中,并且通过分配适当的权重来确定多特征集中每个特征的重要性。本文还提出了一种使用遗传算法来计算集成线性多特征多特征集中每个特征的最优权重的方法。然后,将获得的优化权重与多特征集中的相应特征相乘,然后将加权的曼哈顿距离度量用于检索相似图像。在Corel和Caltech数据库图像的标准子集上对所提出方法的效率进行了实验。将该方法的性能与其他现有的检索方法(如Haar小波和基于Contourlet变换的检索方案)进行了比较。与其他现有方法相比,该方法对Corel数据库产生了92.6%和71%的高平均召回率和精度,对Caltech数据库图像产生了90.5%和72.3%的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号