首页> 外文期刊>Neurocomputing >A real-time EMG pattern recognition method for virtual myoelectric hand control
【24h】

A real-time EMG pattern recognition method for virtual myoelectric hand control

机译:用于虚拟肌电手控制的实时肌电图模式识别方法

获取原文
获取原文并翻译 | 示例

摘要

This study proposes a real-time electro-myogram (EMG) pattern recognition approach for the control of multifunction myoelectric hands. In techniques, time and frequency information is extracted by wavelet packet transform (WPT) and the node energy of the WPT coefficients is selected as the feature of the EMG signals. Then a novel feature selection method based on a depth recursive search algorithm is developed so that the high-dimensional features can be reduced by a supervised feature reduction algorithm. Consequently, the support vector machine (SVM) is adopted to give the recognition result. In the experiment, a real-time EMG pattern recognition system is developed to control a virtual hand with EMG signals from antebrachium. The experimental results show both the high accuracy and better real-time performance of the proposed method.
机译:这项研究提出了一种实时的肌电图(EMG)模式识别方法,用于控制多功能肌电手。在技​​术中,通过小波包变换(WPT)提取时间和频率信息,并选择WPT系数的节点能量作为EMG信号的特征。然后,提出了一种基于深度递归搜索算法的特征选择方法,可以通过监督特征约简算法对高维特征进行约简。因此,采用支持向量机(SVM)给出识别结果。在实验中,开发了一种实时EMG模式识别系统,以利用前臂的EMG信号控制虚拟手。实验结果表明,该方法具有较高的准确性和实时性。

著录项

  • 来源
    《Neurocomputing》 |2014年第20期|345-355|共11页
  • 作者单位

    College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China;

    Center for Research on Intelligent Perception and Computing, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Science, Beijing 100190, China;

    Key Laboratory of Image Processing and Intelligent Control, School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China;

    Key Laboratory of Image Processing and Intelligent Control, School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China;

    Department of Chemical Industrial Equipment and Control Engineering, College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China,Department of Engineering Design and Mathematics, University of the West of England, Bristol BSI6 1QY, UK;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    EMC; Real-time pattern recognition; Wavelet packet; Non-parametric weighted feature; extraction; SVM;

    机译:EMC;实时模式识别小波包非参数加权特征;萃取;支持向量机;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号