首页> 外文期刊>Neurocomputing >Sales forecasting of computer products based on variable selection scheme and support vector regression
【24h】

Sales forecasting of computer products based on variable selection scheme and support vector regression

机译:基于变量选择方案和支持向量回归的计算机产品销售预测

获取原文
获取原文并翻译 | 示例

摘要

Since computer products are highly replaceable and consumer demand often changes dramatically with the invention of new computer products, sales forecasting is therefore always crucial for computer product sales management. When constructing a sales forecasting model, discussing and understanding the important predictor variables can help focus on improving sales management efficacy. Aiming at to select appropriate predictor variable and construct effective forecasting model, this study combines variable selection method and support vector regression (SVR) to construct a hybrid sales forecasting model for computer products. In order to evaluate the feasibility and performance of the proposed approach, this study compiles the weekly sales data of five computer products including Notebook (NB), Liquid Crystal Display (LCD), Main Board (MB), Hard Disk (HD), and Display Card (DC) from a computer product retailer as the illustrative example. The experimental results indicate that the proposed hybrid sales forecasting scheme can not only provide a better forecasting result than the four competing models in terms of forecasting error, but also exhibit the capability of identifying important predictor variables. Furthermore, useful information can be provided by discussing the identified predictor variables for the five different computer products, thereby increasing sales management efficacy.
机译:由于计算机产品具有高度可替换性,并且随着新计算机产品的发明,消费者需求经常发生巨大变化,因此,销售预测对于计算机产品销售管理始终至关重要。在构建销售预测模型时,讨论和理解重要的预测变量有助于集中精力提高销售管理效率。为了选择合适的预测变量并构建有效的预测模型,本研究结合变量选择方法和支持向量回归(SVR)来构建计算机产品的混合销售预测模型。为了评估该方法的可行性和性能,本研究汇总了五种计算机产品的每周销售数据,包括笔记本(NB),液晶显示器(LCD),主板(MB),硬盘(HD)和作为说明示例,来自计算机产品零售商的显示卡(DC)。实验结果表明,所提出的混合销售预测方案不仅可以提供比四种竞争模型更好的预测结果,而且具有识别重要预测变量的能力。此外,可以通过讨论所识别的五个不同计算机产品的预测变量来提供有用的信息,从而提高销售管理的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号