首页> 外文期刊>Neurocomputing >A fuzzy support vector machine algorithm for classification based on a novel PIM fuzzy clustering method
【24h】

A fuzzy support vector machine algorithm for classification based on a novel PIM fuzzy clustering method

机译:基于新型PIM模糊聚类方法的模糊支持向量机分类算法

获取原文
获取原文并翻译 | 示例

摘要

The support vector machine (SVM) has provided excellent performance and has been widely used in real-world classification problems. Fuzzy methods used on the SVM solve the problem that the SVM is sensitive to the outliers or noises in the training set. In this paper, a novel partition index maximization (PIM) clustering method is studied to get a more reasonable and robust fuzzy membership for fuzzy SVM (FSVM). First, we improve the PIM clustering algorithm to cluster each of the two classes from the training set to get proper data centers. Then an algorithm is given to modify the boundary of PIM and form a new training set with fuzzy membership degrees. Finally, we use FSVM to induce the final decision function to show classification results. All the results indicate that the performance of PIM-FSVM is excellent.
机译:支持向量机(SVM)提供了出色的性能,并已广泛用于现实世界中的分类问题。支持向量机上使用的模糊方法解决了支持向量机对训练集中的异常值或噪声敏感的问题。本文研究了一种新颖的分区索引最大化(PIM)聚类方法,以获得一种更合理,更健壮的模糊支持向量机(FSVM)模糊隶属度。首先,我们改进了PIM聚类算法,以对训练集中的两个类别中的每一个进行聚类以获得适当的数据中心。然后给出了一种算法来修改PIM的边界,并形成一个具有模糊隶属度的新训练集。最后,我们使用FSVM导出最终决策函数以显示分类结果。所有结果表明,PIM-FSVM的性能优异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号