首页> 外文期刊>Neurocomputing >Asymmetric neural network synchronization and dynamics based on an adaptive learning rule of synapses
【24h】

Asymmetric neural network synchronization and dynamics based on an adaptive learning rule of synapses

机译:基于自适应突触学习规则的非对称神经网络同步与动力学

获取原文
获取原文并翻译 | 示例

摘要

An adaptive learning rule of synapses was proposed for a general asymmetric neural network. Its feasibility was proved by the Lasalle principle. Numerical simulation results show that synaptic connection weight can converge to an appropriate strength and the network comes to synchronization. Furthermore, ISI (inter-spike interval) of synchronization orbit in neural network has a typical period doubling bifurcation. It is a further improvement compared with bifurcation of the traditional single neuron model, which promotes our understanding of neuron population activities.
机译:针对一般的不对称神经网络,提出了一种自适应的突触学习规则。拉萨尔原理证明了其可行性。数值模拟结果表明,突触连接权重可以收敛到适当的强度,网络达到同步。此外,神经网络中同步轨道的ISI(尖峰间隔)具有典型的周期加倍分支。与传统的单个神经元模型的分叉相比,这是一个进一步的改进,它促进了我们对神经元种群活动的理解。

著录项

  • 来源
    《Neurocomputing》 |2014年第11期|41-45|共5页
  • 作者

    Chuankui Yan; Rubin Wang;

  • 作者单位

    Department of Mathematics, School of Science, Hangzhou Normal University, Hangzhou, China,Institute for Cognitive Neurodynamics, School of Information Science and Engineering, Department of Mathematics, East China University of Science and Technology, Shanghai, China;

    Institute for Cognitive Neurodynamics, School of Information Science and Engineering, Department of Mathematics, East China University of Science and Technology, Shanghai, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Network synchronization; Adaptive learning; Period doubling bifurcation; Synchronization orbit;

    机译:网络同步;适应性学习;分时段加倍;同步轨道;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号