首页> 外文期刊>Neurocomputing >Dynamic neural network-based fault diagnosis of gas turbine engines
【24h】

Dynamic neural network-based fault diagnosis of gas turbine engines

机译:基于动态神经网络的燃气轮机故障诊断

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a neural network-based fault detection and isolation (FDI) scheme is presented to detect and isolate faults in a highly nonlinear dynamics of an aircraft jet engine. Towards this end, dynamic neural networks (DNN) are first developed to learn the input-output map of the jet engine. The DNN is constructed based on a multi-layer perceptron network which uses an MR (infinite impulse response) filter to generate dynamics between the input and output of a neuron, and consequently of the entire neural network. The trained dynamic neural network is then utilized to detect and isolate component faults that may occur in a dual spool turbo fan engine. The fault detection and isolation schemes consist of multiple DNNs or parallel bank of filters, corresponding to various operating modes of the healthy and faulty engine conditions. Using the residuals that are generated by measuring the difference of each network output and the measured engine output various criteria are established for accomplishing the fault diagnosis task, that is addressing the problem of fault detection and isolation of the system components. A number of simulation studies are carried out to demonstrate and illustrate the advantages, capabilities, and performance of our proposed fault diagnosis scheme.
机译:在本文中,提出了一种基于神经网络的故障检测和隔离(FDI)方案来检测和隔离飞机喷气发动机的高度非线性动力学中的故障。为此,首先开发了动态神经网络(DNN)以学习喷气发动机的输入输出图。 DNN是基于多层感知器网络构建的,该感知器网络使用MR(无限脉冲响应)滤波器在神经元的输入和输出之间以及整个神经网络的输入和输出之间生成动力学。然后,将训练有素的动态神经网络用于检测和隔离可能在双阀芯涡轮风扇发动机中发生的组件故障。故障检测和隔离方案由多个DNN或并行的滤波器组组成,分别对应于健康和故障发动机状况的各种运行模式。使用通过测量每个网络输出与所测量的发动机输出之差所产生的残差,可以建立各种标准来完成故障诊断任务,从而解决了故障检测和系统组件隔离的问题。进行了许多仿真研究,以证明和说明我们提出的故障诊断方案的优势,功能和性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号