首页> 外文期刊>Neurocomputing >Two modified Artificial Bee Colony algorithms inspired by Grenade Explosion Method
【24h】

Two modified Artificial Bee Colony algorithms inspired by Grenade Explosion Method

机译:两种改进的人工蜂群算法受手榴弹爆炸方法启发

获取原文
获取原文并翻译 | 示例

摘要

Artificial Bee Colony (ABC) algorithm, a popular swarm intelligence technique based on the intelligent foraging behavior of honey bees, is good at exploration but poor at exploitation. Grenade Explosion Method (GEM) which mimics the mechanism of a grenade explosion has high reliability and fast convergence. Two modified versions of ABC inspired by GEM, namely GABC1 and GABC2, are first proposed to enhance the classical ABC's exploitation ability. GEM is embedded in the employed bees' phase of GABC1, whereas it is embedded in the onlooker bees' phase of GABC2. The performance differences between GABC1 and GABC2 were assessed on two sets of well-known benchmark functions and compared with that of the classical ABC and several other improved ABC algorithms. The experiments show that GABC1 has similar or better performance than GABC2 in most cases, but GABC2 performs more robust and effective than GABC1 on all the functions, they significantly outperform the competitors. These results suggest that the proposed algorithms can effectively serve as alternatives for solving global optimization problems. (C) 2014 Elsevier B.V. All rights reserved.
机译:人工蜂群算法(ABC)是一种流行的基于蜜蜂智能觅食行为的蜂群智能技术,擅长探索,但开发能力差。模拟榴弹爆炸机理的榴弹爆炸方法(GEM)具有高可靠性和快速收敛性。首先提出了受GEM启发的ABC的两个修改版本,即GABC1和GABC2,以增强经典ABC的开发能力。 GEM嵌入GABC1的所用蜜蜂阶段,而GAM2嵌入在旁观者的蜜蜂阶段。在两组著名的基准函数上评估了GABC1和GABC2之间的性能差异,并与经典ABC和其他几种改进的ABC算法进行了比较。实验表明,在大多数情况下,GABC1的性能都与GABC2相似或更好,但GABC2在所有功能上的性能均比GABC1强大和有效,它们明显优于竞争对手。这些结果表明,所提出的算法可以有效地替代解决全局优化问题。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号