首页> 外文期刊>Neurocomputing >A novel face recognition method: Using random weight networks and quasi-singular value decomposition
【24h】

A novel face recognition method: Using random weight networks and quasi-singular value decomposition

机译:一种新颖的人脸识别方法:使用随机加权网络和拟奇异值分解

获取原文
获取原文并翻译 | 示例

摘要

This paper designs a novel human face recognition method, which is mainly based on a new feature extraction method and an efficient classifier - random weight network (RWN). Its innovation of the feature extraction is embodied in the good fusion of the geometric features and algebraic features of the original image. Here the geometric features are acquired by means of fast discrete curvelet transform (FDCT) and 2-dimensional principal component analysis (2DPCA), while the algebraic features are extracted by a proposed quasi-singular value decomposition (Q-SVD) method that can embody the relations of each image under a unified framework. Subsequently, the efficient RWN is applied to classify these fused features to further improve the recognition rate and the recognition speed. Some comparison experiments are carried out on six famous face databases between our proposed method and some other state-of-the-art methods. The experimental results show that the proposed method has an outstanding superiority in the aspects of separability, recognition rate and training time. (C) 2014 Elsevier B.V. All rights reserved.
机译:本文设计了一种新颖的人脸识别方法,该方法主要基于一种新的特征提取方法和一种有效的分类器-随机权重网络(RWN)。其特征提取的创新体现在原始图像的几何特征和代数特征的良好融合中。这里的几何特征是通过快速离散曲波变换(FDCT)和二维主成分分析(2DPCA)来获取的,而代数特征是通过提出的拟奇异值分解(Q-SVD)方法来提取的。统一框架下每个图像的关系。随后,有效的RWN用于对这些融合特征进行分类,以进一步提高识别率和识别速度。在我们提出的方法与其他一些最新方法之间的六个著名的人脸数据库上进行了一些比较实验。实验结果表明,该方法在可分离性,识别率和训练时间等方面均具有突出的优越性。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号