首页> 外文期刊>Neurocomputing >Multi-scale local region based level set method for image segmentation in the presence of intensity inhomogeneity
【24h】

Multi-scale local region based level set method for image segmentation in the presence of intensity inhomogeneity

机译:存在强度不均匀性的基于多尺度局部区域的水平集图像分割方法

获取原文
获取原文并翻译 | 示例

摘要

Intensity inhomogeneity arising from the imperfect image acquisition process is a major challenge for image segmentation. Most of widely used image segmentation methods usually fail to segment the image with intensity inhomogeneity due to the assumption of intensity homogeneity. In this paper, an efficient multi-scale local region based level set method is proposed to segment the image with intensity inhomogeneity, which is based on the multi-scale segmentation and statistical analysis for intensities of local region. Firstly, the local region is defined in circular shape for capturing more local intensity information. The statistical analysis can be performed on intensities of local circular regions centered in each pixel by using multi-scale low-pass filtering. Then, the data term of level set energy functional can be constructed by approximating the normalized weighted image divided by multi-scale local intensity information in a piecewise constant way. In addition, the regularization term is built to control the smoothness of evolving curve and avoid the over-segmentation phenomenon and re-initialization step. Finally, the multi-scale segmentation is performed by minimizing the total level set energy functional by using the finite difference scheme. The experiments on synthetic and real images with slight or severe intensity inhomogeneity can demonstrate the efficiency and robustness of the proposed method. In addition, the comparisons with the recently popular local binary fitting (LBF) model and local Chan-Vese (LCV) model also show that our method has obvious superiority over the traditional local region based methods. (C) 2014 Elsevier B.V. All rights reserved.
机译:由不完善的图像采集过程引起的强度不均匀是图像分割的主要挑战。由于假定了强度均匀性,大多数广泛使用的图像分割方法通常无法对强度不均匀的图像进行分割。本文提出了一种基于局部尺度强度的多尺度分割和统计分析的有效的基于局部尺度的多尺度水平集方法,对强度不均匀的图像进行分割。首先,将局部区域定义为圆形以捕获更多的局部强度信息。通过使用多尺度低通滤波,可以对以每个像素为中心的局部圆形区域的强度执行统计分析。然后,可以通过以分段恒定的方式近似由多尺度局部强度信息划分的归一化加权图像来构造水平集能量函数的数据项。另外,建立正则项可以控制曲线的平滑度,避免过度分割现象和重新初始化步骤。最后,通过使用有限差分方案最小化总水平集能量函数来执行多尺度分割。对强度稍有不均匀或严重不均匀的合成图像和真实图像进行的实验可以证明该方法的有效性和鲁棒性。此外,与最近流行的本地二元拟合(LBF)模型和本地Chan-Vese(LCV)模型的比较也表明,我们的方法比基于传统局部区域的方法具有明显的优势。 (C)2014 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2015年第3期|1086-1098|共13页
  • 作者单位

    Hefei Univ, Dept Comp Sci & Technol, Key Lab Network & Intelligent Informat Proc, Hefei 230601, Anhui, Peoples R China|Chinese Acad Sci, Hefei Inst Intelligent Machines, Intelligent Comp Lab, Hefei 230601, Anhui, Peoples R China;

    Chinese Acad Sci, Hefei Inst Intelligent Machines, Intelligent Comp Lab, Hefei 230601, Anhui, Peoples R China|Univ Sci & Technol China, Dept Automat, Hefei 230601, Anhui, Peoples R China;

    Hefei Univ, Dept Comp Sci & Technol, Key Lab Network & Intelligent Informat Proc, Hefei 230601, Anhui, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Image segmentation; Intensity inhomogeneity; Level set; Local region; Multi-scale; Statistical analysis;

    机译:图像分割强度不均匀水平集局部区域多尺度统计分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号