首页> 外文期刊>Neurocomputing >Convergence of batch gradient learning algorithm with smoothing L-1/2 regularization for Sigma-Pi-Sigma neural networks
【24h】

Convergence of batch gradient learning algorithm with smoothing L-1/2 regularization for Sigma-Pi-Sigma neural networks

机译:具有Sigma-Pi-Sigma神经网络的平滑L-1 / 2正则化的批梯度学习算法的收敛性

获取原文
获取原文并翻译 | 示例

摘要

Sigma-Pi-Sigma neural networks are known to provide more powerful mapping capability than traditional feed-forward neural networks. The L-1/2 regularizer is very useful and efficient, and can be taken as a representative of all the L-q(0 < q < 1) regularizers. However, the nonsmoothness of L-1/2 regulaiization may lead to oscillation phenomenon. The aim of this paper is to develop a novel batch gradient method with smoothing L-1/2 regularization for Sigma-Pi-Sigma neural networks. Compared with conventional gradient learning algorithm, this method produces sparser weights and simpler structure, and it improves the learning efficiency. A comprehensive study on the weak and strong convergence results for this algorithm are also presented, indicating that the gradient of the error function goes to zero and the weight sequence goes to a fixed value, respectively. (C) 2014 Elsevier B.V. All rights reserved.
机译:已知Sigma-Pi-Sigma神经网络比传统的前馈神经网络提供更强大的映射功能。 L-1 / 2正则化器非常有用且高效,可以用作所有L-q(0

著录项

  • 来源
    《Neurocomputing》 |2015年第1期|333-341|共9页
  • 作者单位

    Dalian Polytech Univ, Sch Informat Sci & Engn, Dalian 116034, Peoples R China|Dalian Univ Technol, Sch Elect & Informat Engn, Dalian 116024, Peoples R China;

    Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China;

    Sun Yat Sen Univ, Sch Informat Sci & Technol, Guangzhou 510006, Guangdong, Peoples R China;

    Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China;

    Dalian Univ Technol, Sch Elect & Informat Engn, Dalian 116024, Peoples R China;

    Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sigma-Pi-Sigma neural networks; Batch gradient learning algorithm; Convergence; Smoothing L-1/2 regularization;

    机译:Sigma-Pi-Sigma神经网络;批量梯度学习算法;收敛;平滑L-1 / 2正则化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号