首页> 外文期刊>Neurocomputing >Vision-based anticipatory controller for the autonomous navigation of an UAV using artificial neural networks
【24h】

Vision-based anticipatory controller for the autonomous navigation of an UAV using artificial neural networks

机译:基于视觉的预期控制器,用于使用人工神经网络的无人机自主导航

获取原文
获取原文并翻译 | 示例

摘要

A vision-based anticipatory controller for the autonomous indoor navigation of an unmanned aerial vehicle (UAV) is the topic of this paper. A dual Feedforward/Feedbac.k architecture has been used as the UAV's controller and the K-NN classifier using the gray level image histogram as discriminant variables has been applied for landmarks recognition. After a brief description of the UAV, we first identify the two main components of its autonomous navigation, namely, the landmark recognition and the dual controller based on cerebellar system of living beings, then we focus on the anticipatory module that has been implemented by an artificial neural network. Afterwards, the paper describes the experimental setup and discusses the experimental results centered mainly on the basic UAV's behavior of landmark approximation maneuver, which in topological navigation is known as the beaconing or homing problem. (C) 2014 Elsevier B.V. All rights reserved.
机译:本文的主题是用于无人机的自主室内导航的基于视觉的预期控制器。双前馈/Feedbac.k体系结构已被用作无人机的控制器,而使用灰度图像直方图作为判别变量的K-NN分类器已被用于地标识别。在对无人机进行简要描述之后,我们首先确定其自主导航的两个主要组成部分,即地标识别和基于小脑生物系统的双重控制器,然后我们重点研究由无人机实现的预期模块。人工神经网络。然后,本文描述了实验装置,并讨论了主要以地标近似操纵的基本无人机行为为中心的实验结果,在拓扑导航中将其称为信标或归巢问题。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号