首页> 外文期刊>Neurocomputing >Early diagnosis of Alzheimer's disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images
【24h】

Early diagnosis of Alzheimer's disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images

机译:基于局部最小二乘,主成分分析和支持向量机的分段MRI图像对阿尔茨海默氏病的早期诊断

获取原文
获取原文并翻译 | 示例

摘要

Computer aided diagnosis (CAD) systems using functional and structural imaging techniques enable physicians to detect early stages of the Alzheimer's disease (AD). For this purpose, magnetic resonance imaging (MRI) have been proved to be very useful in the assessment of pathological tissues in AD. This paper presents a new CAD system that allows the early AD diagnosis using tissue-segmented brain images. The proposed methodology aims to discriminate between AD, mild cognitive impairment (MCI) and elderly normal control (NC) subjects and is based on several multivariate approaches, such as partial least squares (PIS) and principal component analysis (PCA). In this study, 188 AD patients, 401 MCI patients and 229 control subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database were studied. Automated brain tissue segmentation was performed for each image obtaining gray matter (GM) and white matter (WM) tissue distributions. The validity of the analyzed methods was tested on the ADNI database by implementing support vector machine classifiers with linear or radial basis function (RBF) kernels to distinguish between normal subjects and AD patients. The performance of our methodology is validated using k-fold cross technique where the system based on PLS feature extraction and linear SVM classifier outperformed the PCA method. In addition, PLS feature extraction is found to be more effective for extracting discriminative information from the data. In this regard, the developed latter CAD system yielded maximum sensitivity, specificity and accuracy values of 85.11%, 91.27% and 88.49%, respectively. (C) 2014 Elsevier B.V. All rights reserved.
机译:使用功能和结构成像技术的计算机辅助诊断(CAD)系统使医生能够检测到阿尔茨海默氏病(AD)的早期阶段。为此,已证明磁共振成像(MRI)在评估AD的病理组织中非常有用。本文提出了一种新的CAD系统,该系统可以使用组织分割的大脑图像进行早期AD诊断。拟议的方法旨在区分AD,轻度认知障碍(MCI)和老年人正常对照(NC)受试者,并且基于几种多元方法,例如偏最小二乘(PIS)和主成分分析(PCA)。在这项研究中,研究了来自阿尔茨海默氏病神经影像学倡议(ADNI)数据库的188位AD患者,401位MCI患者和229位对照对象。对每个图像执行自动脑组织分割,以获得灰质(GM)和白质(WM)组织分布。通过使用带有线性或径向基函数(RBF)核的支持向量机分类器来区分正常受试者和AD患者,在ADNI数据库上测试了所分析方法的有效性。我们的方法的性能通过k折交叉技术进行了验证,其中基于PLS特征提取和线性SVM分类器的系统的性能优于PCA方法。此外,发现PLS特征提取对于从数据中提取判别信息更有效。在这方面,开发的后一种CAD系统产生的最大灵敏度,特异性和准确度值分别为85.11%,91.27%和88.49%。 (C)2014 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2015年第1期|139-150|共12页
  • 作者单位

    Univ Granada, Dept Signal Theory Networking & Commun, E-18071 Granada, Spain;

    Univ Granada, Dept Signal Theory Networking & Commun, E-18071 Granada, Spain;

    Univ Granada, Dept Signal Theory Networking & Commun, E-18071 Granada, Spain;

    Univ Granada, Dept Signal Theory Networking & Commun, E-18071 Granada, Spain;

    Univ Granada, Dept Signal Theory Networking & Commun, E-18071 Granada, Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Computer aided diagnosis system; Alzheimer disease; PLS; PCA; Support vector machine; ADNI database;

    机译:计算机辅助诊断系统;阿尔茨海默病;PLS;PCA;支持向量机;ADNI数据库;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号