首页> 外文期刊>Neurocomputing >Optimal online soft sensor for product quality monitoring in propylene polymerization process
【24h】

Optimal online soft sensor for product quality monitoring in propylene polymerization process

机译:用于丙烯聚合过程中产品质量监控的最佳在线软传感器

获取原文
获取原文并翻译 | 示例

摘要

In the real-time propylene polymerization manufacturing process, melt index (MI), as the key product quality variable, is hard to be measured on-line, which brings difficulties to the control and optimization of this process. However, a large amount of data of other relative process variables in this process can be routinely recorded online by the distributed control system (DCS). An optimal soft-sensor of least squares support vector machine (LS-SVM) is therefore proposed to implement the on-line estimation of MI with the above real-time DCS records, where LS-SVM is employed for developing a data-driven model of the above industry process. In view of that the input variable selection and parameter setting are crucial for the learning results and generalization ability of LS-SVM, the nonlinear isometric feature mapping technique and particle swarm optimization algorithm are then structurally integrated into the model to search the optimal values of those parameters. Considering the process time-varying nature, an online correction strategy is further switched on to update the modeling data and revise the model configuration parameters via adaptive behavior. Finally, the explored soft sensor model is illustrated with a real plant of propylene polymerization, and the results show the predictive accuracy and validity of the proposed systematic approach.
机译:在实时丙烯聚合生产过程中,作为关键产品质量变量的熔融指数(MI)难以在线测量,这给该过程的控制和优化带来了困难。但是,此过程中的其他相关过程变量的大量数据可以由分布式控制系统(DCS)例行在线记录。因此,提出了一种最小二乘支持向量机(LS-SVM)的最优软传感器,以利用上述实时DCS记录来实现MI的在线估计,其中LS-SVM用于开发数据驱动的模型以上行业过程。鉴于输入变量的选择和参数设置对于LS-SVM的学习结果和泛化能力至关重要,因此,将非线性等距特征映射技术和粒子群优化算法结构化地集成到模型中,以寻找这些变量的最佳值参数。考虑到过程随时间变化的性质,进一步采用在线校正策略来更新建模数据并通过自适应行为修改模型配置参数。最后,利用实际的丙烯聚合反应装置对探索的软传感器模型进行了说明,结果表明了该系统方法的预测准确性和有效性。

著录项

  • 来源
    《Neurocomputing》 |2015年第ptac期|1216-1224|共9页
  • 作者

    Zhong Cheng; Xinggao Liu;

  • 作者单位

    School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P.R. China,State Key Laboratory of Industrial Control Technology, Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China;

    State Key Laboratory of Industrial Control Technology, Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Polypropylene; Melt index prediction; Soft-sensor; Least squares support vector machine; Particle swarm optimization; Online correction;

    机译:聚丙烯;熔体指数预测;软传感器最小二乘支持向量机;粒子群优化;在线更正;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号