首页> 外文期刊>Neurocomputing >Stochastic synchronization for Markovian coupled neural networks with partial information on transition probabilities
【24h】

Stochastic synchronization for Markovian coupled neural networks with partial information on transition probabilities

机译:具有转移概率部分信息的Markovian耦合神经网络的随机同步

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on stochastic synchronization for Markovian coupled neural networks with partial information on transition probabilities and random coupling strengths. The coupling configuration matrices are not restricted to be symmetric, and the coupling strengths are mutually independent random variables. By designing a novel augmented Lyapunov-Krasovskii functional and using reciprocally convex combination technique and the properties of random variables, new delay-dependent synchronization criteria in terms of linear matrix inequalities are derived. The obtained criteria depend not only on upper and lower bounds of delay but also on mathematical expectations and variances of random coupling strengths. Numerical examples are provided to verify the effectiveness of the presented results.
机译:本文重点研究马尔可夫耦合神经网络的随机同步,并提供有关转移概率和随机耦合强度的部分信息。耦合构型矩阵不限于对称,并且耦合强度是相互独立的随机变量。通过设计一种新颖的增广Lyapunov-Krasovskii泛函并使用倒凸组合技术和随机变量的性质,得出了关于线性矩阵不等式的新的依赖于延迟的同步准则。获得的标准不仅取决于延迟的上限和下限,而且还取决于数学期望和随机耦合强度的方差。提供了数值示例,以验证所提出结果的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号