首页> 外文期刊>Neurocomputing >Accurate and robust facial expressions recognition by fusing multiple sparse representation based classifiers
【24h】

Accurate and robust facial expressions recognition by fusing multiple sparse representation based classifiers

机译:通过融合多个基于稀疏表示的分类器,进行准确而鲁棒的面部表情识别

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an effective and efficient approach based on simulating the information processing procedure of the biological visual system to solve the occlusion problem in facial expression recognition. The proposed method is composed of three components. First Histograms of Oriented Gradients (HOG) and Local Binary Patterns (LBP) are used to extract features, which imitate the responding to stimuli on visual cortex. Second, Sparse Representation based Classification (SRC) is used due to its robustness to occlusions. Finally, since the recognition results of HOG+SRC and LBP+SRC are complimentary because HOG mainly extracts shape information while LBP primarily represents texture information, a strategy of combining HOG+SRC and LBP+SRC is implemented. Experiments on the Cohn-Kanade database show that the proposed method achieves better performance than many existing methods, and it is robust to both random occlusions and the major component occlusions.
机译:本文通过模拟生物视觉系统的信息处理过程,提出了一种有效的方法来解决面部表情识别中的遮挡问题。所提出的方法由三个部分组成。定向梯度的第一直方图(HOG)和局部二值模式(LBP)用于提取特征,该特征模仿对视觉皮层上刺激的响应。其次,由于其对遮挡的鲁棒性,因此使用了基于稀疏表示的分类(SRC)。最后,由于HOG主要提取形状信息而LBP主要表示纹理信息,因此HOG + SRC和LBP + SRC的识别结果是互补的,因此实现了将HOG + SRC和LBP + SRC结合的策略。在Cohn-Kanade数据库上进行的实验表明,所提出的方法比许多现有方法具有更好的性能,并且对于随机遮挡和主要成分遮挡均具有鲁棒性。

著录项

  • 来源
    《Neurocomputing》 |2015年第ptaa期|71-78|共8页
  • 作者

    Yan Ouyang; Nong Sang; Rui Huang;

  • 作者单位

    Science and Technology on Multi-spectral Information Processing Laboratory, School of Automation, Huazhong University of Science and Technology, 430074 Wuhan, China;

    Science and Technology on Multi-spectral Information Processing Laboratory, School of Automation, Huazhong University of Science and Technology, 430074 Wuhan, China;

    NEC Laboratories China, l00084 Beijing, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    HOG; LBP; Sparse Representation; based Classification;

    机译:猪LBP;稀疏表示;基于分类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号