首页> 外文期刊>Neurocomputing >Low-rank representation integrated with principal line distance for contactless palmprint recognition
【24h】

Low-rank representation integrated with principal line distance for contactless palmprint recognition

机译:低秩表示法与主线距离集成在一起,可实现非接触式掌纹识别

获取原文
获取原文并翻译 | 示例

摘要

Contactless palmprint recognition has recently begun to draw attention of researchers. Different from conventional palmprint images, contactless palmprint images are captured under free conditions and usually have significant variations on translations, rotations, illuminations and even backgrounds. Conventional powerful palmprint recognition methods are not very effective for the recognition of con tactless palmprint. It is known that low-rank representation (LRR) is a promizing scheme for subspace clustering, owing to its success in exploring the multiple subspace structures of data. In this paper, we integrate LRR with the adaptive principal line distance for contactless palmprint recognition. The principal lines are the most distinctive features of the palmprint and can be correctly extracted in most cases; thereby, the principal line distances can be used to determine the neighbors of a palmprint image. With the principal line distance penalty, the proposed method effectively improves the clustering results of LRR by improving the weights of the affinities among nearby samples with small principal line distances. Therefore, the weighted affinity graph identified by the proposed method is more discriminative. Extensive experiments show that the proposed method can achieve higher accuracy than both the conventional powerful palmprint recognition methods and the subspace clustering-based methods in contactless palmprint recognition. Also, the proposed method shows promizing robustness to the noisy palmprint images. The effectiveness of the proposed method indicates that using LRR for contactless palmprint recognition is feasible. (C) 2016 Elsevier B.V. All rights reserved.
机译:非接触式掌纹识别最近已开始引起研究人员的注意。与常规掌纹图像不同,非接触掌纹图像是在自由条件下捕获的,通常在平移,旋转,照明甚至背景方面都具有显着变化。传统的强大掌纹识别方法对于非接触式掌纹的识别不是很有效。众所周知,由于低秩表示(LRR)成功地探索了数据的多个子空间结构,因此它是子空间聚类的一种高级方案。在本文中,我们将LRR与自适应主线距离集成在一起以实现非接触式掌纹识别。主线是掌纹的最鲜明特征,在大多数情况下可以正确提取。因此,主线距离可以用于确定掌纹图像的邻居。利用主线距离代价,该方法通过提高主线距离较小的附近样本之间的亲和力权重,有效地改善了LRR的聚类结果。因此,通过所提出的方法确定的加权亲和图更具区分性。大量实验表明,与传统的强大掌纹识别方法和基于子空间聚类的非接触掌纹识别方法相比,该方法具有更高的精度。而且,所提出的方法显示出对嘈杂的掌纹图像的鲁棒性。该方法的有效性表明,将LRR用于非接触式掌纹识别是可行的。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第19期|264-275|共12页
  • 作者单位

    Harbin Inst Technol, Shenzhen Grad Sch, Biocomp Res Ctr, Shenzhen, Peoples R China;

    Harbin Inst Technol, Shenzhen Grad Sch, Biocomp Res Ctr, Shenzhen, Peoples R China;

    Univ Macau, Dept Comp & Informat Sci, Taipa, Macau, Peoples R China;

    Harbin Inst Technol, Shenzhen Grad Sch, Biocomp Res Ctr, Shenzhen, Peoples R China;

    Harbin Inst Technol, Shenzhen Grad Sch, Biocomp Res Ctr, Shenzhen, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Palmprint recognition; Contactless palmprint image; Low-rank representation; Principal line distance;

    机译:掌纹识别;非接触式掌纹图像;低秩表示;主线距离;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号