首页> 外文期刊>Neurocomputing >A new sampling method in particle filter based on Pearson correlation coefficient
【24h】

A new sampling method in particle filter based on Pearson correlation coefficient

机译:基于Pearson相关系数的粒子滤波采样新方法。

获取原文
获取原文并翻译 | 示例

摘要

Particle filters have been proven to be very effective for nonlinearon-Gaussian systems. However, the great disadvantage of a particle filter is its particle degeneracy and sample impoverishment. An improved particle filter based on Pearson correlation coefficient (PPC) is proposed to reduce the disadvantage. The PPC is adopted to determine whether the particles are close to the true states. By resampling the particles in the prediction step, the new PF performs better than generic PF. Finally, some simulations are carried out to illustrate the effectiveness of the proposed filter. (C) 2016 Elsevier B.V. All rights reserved.
机译:事实证明,粒子滤波器对于非线性/非高斯系统非常有效。然而,颗粒过滤器的最大缺点是其颗粒退化和样品贫乏。提出了一种基于皮尔逊相关系数(PPC)的改进的粒子滤波器,以减少该缺点。采用PPC确定粒子是否接近真实状态。通过在预测步骤中对粒子进行重新采样,新PF的性能将优于通用PF。最后,进行了一些仿真来说明所提出的滤波器的有效性。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第5期|208-215|共8页
  • 作者单位

    Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Particle filter; Pearson correlation coefficient; Importance density;

    机译:粒子滤波;皮尔逊相关系数;重要性密度;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号