首页> 外文期刊>Neurocomputing >Tracking multiple maneuvering targets using a sequential multiple target Bayes filter with jump Markov system models
【24h】

Tracking multiple maneuvering targets using a sequential multiple target Bayes filter with jump Markov system models

机译:使用具有跳跃Markov系统模型的连续多目标贝叶斯滤波器跟踪多个机动目标

获取原文
获取原文并翻译 | 示例

摘要

Tracking multiple maneuvering (MM) targets is a well-known and challenging problem because of clutter and several uncertainties existing in target motion mode, target detection, and data association. An efficient solution to this problem is the Gaussian mixture probability hypothesis density (GM-PHD) filter for jump Markov system (JMS) models. However, this solution is inapplicable to circumstances where detection probability is low because the GM-PHD filter for JMS models requires a high detection probability. To address this problem, we propose a sequential multiple target (MT) Bayes filter for JMS models. To track MM targets that are switching among a set of linear Gaussian models, an implementation process of this filter for linear Gaussian jump Markov MT models is also developed. The conclusion that the novel filter is more efficient for tracking MM targets than the existing filter for JMS models in circumstances of low detection probability is validated by simulation results. (C) 2016 Elsevier B.V. All rights reserved.
机译:由于目标运动模式,目标检测和数据关联中存在混乱和一些不确定性,因此跟踪多个机动(MM)目标是一个众所周知且具有挑战性的问题。一个有效的解决方案是用于跳跃马尔可夫系统(JMS)模型的高斯混合概率假设密度(GM-PHD)滤波器。但是,该解决方案不适用于检测概率较低的情况,因为用于JMS模型的GM-PHD滤波器需要较高的检测概率。为了解决这个问题,我们为JMS模型提出了一个顺序多目标(MT)贝叶斯滤波器。为了跟踪在一组线性高斯模型之间切换的MM目标,还针对线性高斯跳跃马尔可夫MT模型开发了该滤波器的实现过程。仿真结果验证了在检测概率较低的情况下,新型过滤器比现有的JMS模型过滤器更有效的跟踪MM目标的结论。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号