首页> 外文期刊>Neurocomputing >Locality-preserving descriptor for robust texture feature representation
【24h】

Locality-preserving descriptor for robust texture feature representation

机译:用于鲁棒纹理特征表示的保留位置的描述符

获取原文
获取原文并翻译 | 示例

摘要

Recent texture classification methods include rotation-invariant feature-encoding procedures based on local binary patterns. Such methods are robust to rotational changes, but they result in discarded locality information (i.e., geometrical information) of texture images. Hence, we present a locality-preserving descriptor that encodes rotation-invariant features. The proposed method samples neighboring pixels similar to procedures based on local binary patterns, but neighborhood sampling is done based on Gabor Maximum Orientation to ensure that locality is preserved. Conventional methods discard the locality information because bit patterns are grouped for rotation-invariant encoding. In other words, the grouping procedure ignores the geometry of each bit pattern. However, the proposed locality-preserving descriptor does not include a grouping procedure, though it is both rotation invariant and locality preserving, owing to Gabor filter banks. In the experiments, we demonstrated the state-of-the-art performance of our method with widely used texture datasets. (C) 2016 Elsevier B.V. All rights reserved.
机译:最近的纹理分类方法包括基于局部二进制模式的旋转不变特征编码过程。这样的方法对于旋转变化是鲁棒的,但是它们导致纹理图像的被丢弃的局部信息(即,几何信息)。因此,我们提出了一种编码旋转不变特征的局部性描述子。所提出的方法类似于基于局部二进制模式的过程对相邻像素进行采样,但是基于Gabor最大取向来进行邻域采样以确保保留局部性。常规方法会丢弃位置信息,因为将位模式分组以进行旋转不变编码。换句话说,分组过程将忽略每个位模式的几何形状。然而,由于Gabor滤波器组的原因,所提出的局部性保留描述符不包括分组过程,尽管它既是旋转不变的又是局部性保留。在实验中,我们用广泛使用的纹理数据集证明了我们方法的最新性能。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号