首页> 外文期刊>Neurocomputing >Geometric affine transformation estimation via correlation filter for visual tracking
【24h】

Geometric affine transformation estimation via correlation filter for visual tracking

机译:通过相关滤波器进行几何仿射变换估计以进行视觉跟踪

获取原文
获取原文并翻译 | 示例

摘要

Correlation filter achieves promising performance with high speed in visual tracking. However, conventional correlation filter based trackers cannot tackle affine transformation issues such as scale variation, rotation and skew. To address this problem, in this paper, we propose a part-based representation tracker via kernelized correlation filter (KCF) for visual tracking. A Spatial-Temporal Angle Matrix (STAM), severed as confidence metric, is proposed to select reliable patches from parts via multiple correlation filters. These stable patches are used to estimate a 2D affine transformation matrix of the target in a geometric method. Specially, the whole combination scheme for these stable patches is proposed to exploit sampling space in order to obtain numerous affine matrices and their corresponding candidates. The diversiform candidates would help to seek for the optimal candidate to represent the object's accurate affine transformation in a higher probability. Both qualitative and quantitative evaluations on VOT2014 challenge and Object Tracking Benchmark (OTB) show that the proposed tracking method achieves favorable performance compared with other state-of-the-art methods. (C) 2016 Elsevier B.V. All rights reserved.
机译:相关滤波器在视觉跟踪中实现了高速有希望的性能。然而,传统的基于相关滤波器的跟踪器无法解决仿射变换问题,例如比例变化,旋转和偏斜。为了解决这个问题,在本文中,我们提出了一种通过内核相关滤波器(KCF)进行视觉跟踪的基于零件的表示跟踪器。提出了一种时空角度矩阵(STAM),将其划分为置信度,以通过多个相关滤波器从零件中选择可靠的补丁。这些稳定的补丁用于以几何方法估计目标的2D仿射变换矩阵。特别地,提出了这些稳定补丁的整体组合方案,以利用采样空间以获得大量仿射矩阵及其对应的候选者。多样化的候选对象将有助于寻找最佳的候选对象,以更高的概率表示对象的精确仿射变换。对VOT2014挑战和对象跟踪基准(OTB)的定性和定量评估均表明,与其他最新方法相比,所提出的跟踪方法具有良好的性能。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第19期|109-120|共12页
  • 作者

    Liu Fanghui; Zhou Tao; Yang Jie;

  • 作者单位

    Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai, Peoples R China;

    Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai, Peoples R China;

    Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Correlation filter; Part-based; Affine transformation estimation; Object tracking;

    机译:相关滤波器;基于零件;仿射变换估计;目标跟踪;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号