首页> 外文期刊>Neurocomputing >Region-of-interest extraction based on spectrum saliency analysis and coherence-enhancing diffusion model in remote sensing images
【24h】

Region-of-interest extraction based on spectrum saliency analysis and coherence-enhancing diffusion model in remote sensing images

机译:基于频谱显着性分析和相干增强扩散模型的遥感图像感兴趣区域提取

获取原文
获取原文并翻译 | 示例

摘要

Saliency analysis, which is a fast and efficient Method fir extracting Regions of Interest (ROIs), has been applied in the field of remote sensing image analysis. In this paper, a novel saliency analysis model is proposed using spectrum saliency analysis (SSA) and coherence-enhancing diffusion model (CED). In SSA, the probability. of each pixel intensity value is counted to get the one-dimensional histogram for each band, then information content of each band is calculated according to the one-diniensional histogram and generate spectrum saliency map after the information Content weighted fusion of each band. In CED, coherence-enhancing diffusion model is introduced for spectrum saliency map that aims to smooth internal ROIs and eliminate background interference to improve the precision, accuracy and completeness of the resulting saliency map. Finally, ROIs are segmented from the saliency maps of original images by an adaptive threshold segmentation algorithm. Several experiments were conducted to evaluate the overall performance of the proposed model compared with the other eight outstanding models qualitatively and quantitatively. The experimental evaluations show that the proposed model outperforms the relevant outstanding models. (C) 2016 Elsevier B.V. All rights reserved.
机译:显着性分析是一种快速有效的提取感兴趣区域(ROI)的方法,已应用于遥感图像分析领域。本文使用频谱显着性分析(SSA)和相干增强扩散模型(CED)提出了一种新的显着性分析模型。在SSA中,概率。对每个像素强度值的像素值进行计数,得到每个频段的一维直方图,然后根据一维直方图计算每个频段的信息含量,并在对每个频段的信息含量进行加权融合后生成频谱显着性图。在CED中,针对频谱显着图引入了相干增强扩散模型,该模型旨在使内部ROI趋于平滑并消除背景干扰,从而提高了所得显着图的准确性,准确性和完整性。最后,通过自适应阈值分割算法从原始图像的显着性图中分割出ROI。进行了几次实验,以定性和定量地评估了所提出模型与其他八个出色模型的整体性能。实验评估表明,所提出的模型优于相关的优秀模型。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号