首页> 外文期刊>Neurocomputing >Multi-spectral palmprint recognition based on oriented multiscale log-Gabor filters
【24h】

Multi-spectral palmprint recognition based on oriented multiscale log-Gabor filters

机译:基于定向多尺度log-Gabor滤波器的多谱掌纹识别

获取原文
获取原文并翻译 | 示例

摘要

Among several palmprint recognition methods proposed recently, coding-based approaches using multi spectral palmprint images are attractive owing to their high recognition rates. Aiming to further improve the performance of these approaches, this paper presents a novel multi-spectral palmprint recognition approach based on oriented multiscale log-Gabor filters. The proposed method aims to enhance the recognition performances by proposing novel solutions at three stages of the recognition process. Inspired by the bitwise competitive coding, the feature extraction employs a multi-resolution log-Gabor filtering where the final feature map is composed of the winning codes of the lowest filters' bank response. The matching process employs a bitwise Hamming distance and Kullback-Leibler divergence as novel metrics to enable an efficient capture of the intra-and inter-similarities between palmprint feature maps. Finally, the decision stage is carried pout using a fusion of the scores generated from different spectral bands to reduce overlapping. In addition, a fusion of the feature maps through two proposed novel feature fusion techniques to allow us to eliminate the inherent redundancy of the features of neighboring spectral bands is also proposed. The experimental results obtained using the multi spectral palmprint database MS-PolyU have shown that the proposed method achieves high accuracy in mono-spectral and multi-spectral recognition performances for both verification and identification modes; and also outperforms the state-of-the-art methods. (C) 2016 Elsevier B.V. All rights reserved.
机译:在最近提出的几种掌纹识别方法中,使用多光谱掌纹图像的基于编码的方法由于其高识别率而具有吸引力。为了进一步提高这些方法的性能,本文提出了一种基于定向多尺度对数-Gabor滤波器的新型多谱掌纹识别方法。所提出的方法旨在通过在识别过程的三个阶段提出新颖的解决方案来增强识别性能。受逐位竞争编码的启发,特征提取采用了多分辨率log-Gabor滤波,其中最终特征图由最低滤波器响应的获胜代码组成。匹配过程采用按位的汉明距离和Kullback-Leibler散度作为新颖的度量标准,从而能够有效捕获掌纹特征图之间的内部和内部相似性。最后,通过融合从不同光谱带生成的分数以减少重叠来进行决策阶段。另外,还提出了通过两种提出的新颖特征融合技术来融合特征图,以允许我们消除相邻光谱带特征的固有冗余。使用多光谱掌纹数据库MS-PolyU进行的实验结果表明,该方法在验证和识别模式下的单光谱和多光谱识别性能均达到了较高的准确度。并且也优于最新方法。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号