首页> 外文期刊>Neurocomputing >Latent variable pictorial structure for human pose estimation on depth images
【24h】

Latent variable pictorial structure for human pose estimation on depth images

机译:用于深度图像上人体姿势估计的潜在变量图形结构

获取原文
获取原文并翻译 | 示例

摘要

Prior models of human pose play a key role in state-of-the-art techniques for monocular pose estimation. However, a simple Gaussian model cannot represent well the prior knowledge of the pose diversity on depth images. In this paper, we develop a latent variable-based prior model by introducing a latent variable into the general pictorial structure. Two key characteristics of our model (we call Latent Variable Pictorial Structure) are as follows: (1) it adaptively adopts prior pose models based on the estimated value of the latent variable; and (2) it enables the learning of a more accurate part classifier. Experimental results demonstrate that the proposed method outperforms other state-of-the-art methods in recognition rate on the public datasets. (C) 2016 Published by Elsevier B.V.
机译:先前的人体姿势模型在用于单眼姿势估计的最新技术中起着关键作用。然而,一个简单的高斯模型不能很好地表示深度图像上姿态多样性的先验知识。在本文中,我们通过将潜在变量引入一般的图形结构来开发基于潜在变量的先验模型。我们模型的两个关键特征(我们称为潜在变量图形结构)如下:(1)根据潜在变量的估计值自适应地采用先验姿势模型; (2)可以学习更准确的零件分类器。实验结果表明,该方法在公开数据集上的识别率优于其他最新方法。 (C)2016由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号