首页> 外文期刊>Neurocomputing >Displacement prediction of landslide based on generalized regression neural networks with K-fold cross-validation
【24h】

Displacement prediction of landslide based on generalized regression neural networks with K-fold cross-validation

机译:基于K折交叉验证的广义回归神经网络的滑坡位移预测

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a generalized regression neural networks (GRNNS) with K-fold cross-validation (GRNNSK) method for predicting the displacement of landslide. Furthermore, correlation analysis is used to find the potential input variables for this predicting model, such as Pearson cross-correlation coefficients (PCC) and mutual information (MI) are applied in this paper. Tests on two case studies of Liangshuijing (LSJ) and Baishuihe (BSH) landslide in the Three Gorges reservoir area of China demonstrate the effectiveness of the proposed approach. (C) 2016 Elsevier B.V. All rights reserved.
机译:在本文中,我们提出了一种具有K折交叉验证(GRNNSK)方法的广义回归神经网络(GRNNS),用于预测滑坡的位移。此外,使用相关分析来找到该预测模型的潜在输入变量,例如本文应用了Pearson互相关系数(PCC)和互信息(MI)。在中国三峡库区凉水井(LSJ)和白水河(BSH)滑坡的两个案例研究中,证明了该方法的有效性。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第19期|40-47|共8页
  • 作者

    Jiang Ping; Chen Jiejie;

  • 作者单位

    Huazhong Univ Sci & Technol, Sch Automat, Wuhan 430074, Peoples R China|Hubei PolyTech Univ, Comp Sch, Huangshi 435002, Peoples R China|Minist China, Key Lab Image Proc & Intelligent Control Educ, Wuhan 430074, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Automat, Wuhan 430074, Peoples R China|Minist China, Key Lab Image Proc & Intelligent Control Educ, Wuhan 430074, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Generalized regression neural networks; Pearson cross-correlation coefficients; Mutual information; Landslide;

    机译:广义回归神经网络皮尔逊互相关系数互信息滑坡;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号