首页> 外文期刊>Neurocomputing >An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson's disease
【24h】

An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson's disease

机译:用于帕金森氏病早期诊断的高效混合核极限学习机方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we explore the potential of extreme learning machine (ELM) and kernel ELM (KELM) for early diagnosis of Parkinson's disease (PD). In the proposed method, the key parameters including the number of hidden neuron and type of activation function in ELM, and the constant parameter C and kernel parameter gamma in KELM are investigated in detail. With the obtained optimal parameters, ELM and KELM manage to train the optimal predictive models for PD diagnosis. In order to further improve the performance of ELM and KELM models, feature selection techniques are implemented prior to the construction of the classification models. The effectiveness of the proposed method has been rigorously evaluated against the PD data set in terms of classification accuracy, sensitivity, specificity and the area under the ROC (receiver operating characteristic) curve (AUC). Compared to the existing methods in previous studies, the proposed method has achieved very promising classification accuracy via 10-fold cross-validation (CV) analysis, with the highest accuracy of 96.47% and average accuracy of 95.97% over 10 runs of 10-fold CV. (C) 2015 Elsevier B.V. All rights reserved.
机译:在本文中,我们探索了极限学习机(ELM)和核仁ELM(KELM)在帕金森氏病(PD)早期诊断中的潜力。该方法详细研究了关键参数,包括隐含神经元的数目和激活函数的类型;关键参数包括常数参数C和内核参数γ。利用获得的最佳参数,ELM和KELM设法为PD诊断训练最佳的预测模型。为了进一步提高ELM和KELM模型的性能,在构建分类模型之前实施了特征选择技术。已针对分类数据,分类准确度,灵敏度,特异性和ROC(接收器工作特性)曲线(AUC)下面积等PD数据集严格评估了所提出方法的有效性。与以前的研究中的现有方法相比,该方法通过1​​0倍交叉验证(CV)分析获得了非常有希望的分类准确性,在10次10​​倍运行中,最高准确性为96.47%,平均准确性为95.97%简历。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第5期|131-144|共14页
  • 作者单位

    Wenzhou Univ, Coll Phys & Elect Informat, Wenzhou 325035, Zhejiang, Peoples R China;

    Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China;

    Shenzhen Inst Informat Technol, Sch Digital Media, Shenzhen 518172, Peoples R China;

    Wenzhou Univ, Coll Phys & Elect Informat, Wenzhou 325035, Zhejiang, Peoples R China|Northwestern Polytech Univ, Sch Comp Sci & Engn, Xian 710072, Peoples R China;

    Wenzhou Univ, Coll Phys & Elect Informat, Wenzhou 325035, Zhejiang, Peoples R China;

    Chinese Acad Sci, Inst Psychol, State Key Lab Brain & Cognit Sci, Beijing 100101, Peoples R China|Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun 130012, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Kernel extreme learning machine; Feature selection; Medical diagnosis; Parkinson's disease;

    机译:内核极限学习机;特征选择;医学诊断;帕金森氏病;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号