首页> 外文期刊>Neurocomputing >A novel supervised approach to learning efficient kernel descriptors for high accuracy object recognition
【24h】

A novel supervised approach to learning efficient kernel descriptors for high accuracy object recognition

机译:一种新颖的监督方法,用于学习有效的内核描述符以实现高精度目标识别

获取原文
获取原文并翻译 | 示例

摘要

Discriminative patch-level features are essential for achieving good performance in many computer vision tasks. Recently, unsupervised learning approaches have been employed to design such features based on the similarities of image patches. These approaches, such as kernel descriptors (KD) and efficient kernel descriptors (EKD), have shown superior performance than pre-defined image features (e.g., SIFT or HoG) in object recognition. They gave a kernel generalization of orientation histograms and suggested a promising way to 'grow-up' features based on available information.
机译:具有区别性的补丁程序级功能对于在许多计算机视觉任务中实现良好性能至关重要。近来,已经采用无监督学习方法基于图像补丁的相似性来设计这样的特征。这些方法,例如内核描述符(KD)和有效内核描述符(EKD),在对象识别中已显示出比预定义图像特征(例如SIFT或HoG)更高的性能。他们给出了方向直方图的内核概括,并提出了一种基于可用信息来“增长”特征的有前途的方法。

著录项

  • 来源
    《Neurocomputing》 |2016年第19期|94-101|共8页
  • 作者单位

    Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing Key Lab Traff Data Anal & Min, Beijing, Peoples R China|Hebei Univ, Coll Math & Informat Sci, Key Lab Machine Learning & Computat Intelligence, Wuhan, Hebei, Peoples R China;

    Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing Key Lab Traff Data Anal & Min, Beijing, Peoples R China;

    Hebei Univ, Coll Math & Informat Sci, Key Lab Machine Learning & Computat Intelligence, Wuhan, Hebei, Peoples R China;

    Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing Key Lab Traff Data Anal & Min, Beijing, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Supervised efficient kernel descriptor; Class label; Incomplete Cholesky decomposition;

    机译:有监督的有效内核描述符;类标签;不完整的Cholesky分解;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号