首页> 外文期刊>Neurocomputing >Video-based facial expression recognition using learned spatiotemporal pyramid sparse coding features
【24h】

Video-based facial expression recognition using learned spatiotemporal pyramid sparse coding features

机译:使用学习的时空金字塔稀疏编码特征的基于视频的面部表情识别

获取原文
获取原文并翻译 | 示例

摘要

Recently, hand-designed local descriptors like spatiotemporal Gabor filters and VLBP have been successfully applied in video-based facial expression recognition. One major drawback of these methods is that they are hard to generalize to different problems. In this paper, we propose a new video-based facial expression recognition method by automatically learning features from video data. Specifically, we use sparse coding algorithm to learn spatiotemporal features from unlabeled facial expression videos. For modeling spatiotemporal layout information embedded in facial expressions to improve recognition performance, we extend the idea of spatial pyramid matching (SPM) into video case, and perform spatiotemporal pyramid feature pooling following sparse coding feature extraction. Experimental results on widely used Cohn-Kanade database show that the classification performance can be improved effectively by considering spatiotemporal layout of facial expressions, and our method outperforms popular methods using hand-designed features. (C) 2015 Elsevier B.V. All rights reserved.
机译:最近,诸如时空Gabor滤波器和VLBP之类的手工设计的局部描述符已成功应用于基于视频的面部表情识别中。这些方法的一个主要缺点是很难将它们推广到不同的问题。在本文中,我们提出了一种通过自动从视频数据中学习特征来基于视频的面部表情识别新方法。具体来说,我们使用稀疏编码算法从未标记的面部表情视频中学习时空特征。为了对嵌入面部表情中的时空布局信息进行建模以提高识别性能,我们将空间金字塔匹配(SPM)的概念扩展到视频案例中,并在稀疏编码特征提取之后执行时空金字塔特征池。在广泛使用的Cohn-Kanade数据库上进行的实验结果表明,通过考虑面部表情的时空布局可以有效地提高分类性能,并且我们的方法优于通过手工设计的功能所流行的方法。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号