首页> 外文期刊>Neurocomputing >Classification of medicinal plants: An approach using modified LBP with symbolic representation
【24h】

Classification of medicinal plants: An approach using modified LBP with symbolic representation

机译:药用植物的分类:使用带有符号表示的修饰LBP的方法

获取原文
获取原文并翻译 | 示例

摘要

In this work, a symbolic approach for classification of plant leaves based on texture features is proposed. Modified Local binary patterns (MLBP) is proposed to extract texture features from plant leaves. Texture of plant leaves belonging to same plant species may vary due to maturity levels, acquisition and environmental conditions. Hence, the concept of clustering is used to choose multiple class representatives and the intra-cluster variations are captured using interval valued type symbolic features. The classification is facilitated using a simple neatest neighbor classifier. Extensive experiments have been carried out on newly created UoM Medicinal Plant Dataset as well as publically available Flavia, Foliage and Swedish plant leaf datasets. Results obtained by proposed methodology are compared with the contemporary methodologies. The Outex dataset is also considered for experiments and the results are promising even on this synthetic dataset. (C) 2015 Elsevier B.V. All rights reserved.
机译:在这项工作中,提出了一种基于纹理特征的植物叶片分类的符号方法。提出了改进的局部二值模式(MLBP)从植物叶片中提取纹理特征。属于同一植物物种的植物叶片的质地可能会因成熟水平,获取和环境条件而异。因此,使用聚类的概念来选择多个类代表,并且使用区间值类型的符号特征来捕获聚类内变化。使用简单的最近邻分类器有助于分类。已对新创建的UoM药用植物数据集以及公开可用的Flavia,Foliage和瑞典植物叶数据集进行了广泛的实验。通过提议的方法学获得的结果与当代方法学进行了比较。还考虑将Outex数据集用于实验,即使在该合成数据集上,结果也很有希望。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号