首页> 外文期刊>Neurocomputing >Dissipativity-based state estimation of delayed static neural networks
【24h】

Dissipativity-based state estimation of delayed static neural networks

机译:基于耗散的延迟静态神经网络状态估计

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a dissipativity-based state estimation methodology for static neural networks with time-varying delay. An Arcak-type observer is used to construct the estimation error system. To reduce the conservatism of observer design, a Lyapunov-Krasovskii functional (LKF) is adopted to fully exploit the available characteristics about activation function. In addition, a relaxed constraint condition is put forward to keep the whole LKF positive without requiring parts of involved matrices to be positive. By adopting the LKF and constraint condition, estimation conditions with a strict dissipative performance are obtained, which ensures the asymptotic stability of estimation error system. The computation of gain matrices about observer can be transformed into a convex optimization problem. Two examples are given to illustrate the validity and advantage of provided methodology. (C) 2017 Elsevier B.V. All rights reserved.
机译:提出了一种基于耗散性的时变静态神经网络状态估计方法。使用Arcak型观察器来构造估计误差系统。为了减少观察者设计的保守性,采用了Lyapunov-Krasovskii函数(LKF)来充分利用激活函数的可用特性。此外,提出了宽松的约束条件,以使整个LKF保持正值,而无需涉及的矩阵的某些部分为正。通过采用LKF和约束条件,获得了具有严格耗散性能的估计条件,从而保证了估计误差系统的渐近稳定性。关于观察者的增益矩阵的计算可以转化为凸优化问题。给出两个例子来说明所提供方法的有效性和优势。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2017年第19期|137-143|共7页
  • 作者单位

    Shanghai Jiao Tong Univ, Sch Aeronaut & Astronaut, Shanghai 200240, Peoples R China;

    Anhui Univ Technol, Sch Elect Engn & Informat, Maanshan 243002, Peoples R China;

    Anhui Univ Technol, Sch Elect Engn & Informat, Maanshan 243002, Peoples R China;

    Anhui Univ Technol, Sch Elect Engn & Informat, Maanshan 243002, Peoples R China;

    Shanghai Jiao Tong Univ, Sch Aeronaut & Astronaut, Shanghai 200240, Peoples R China;

    Shanghai Jiao Tong Univ, Sch Aeronaut & Astronaut, Shanghai 200240, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Static neural networks; State estimation; Dissipativity; Time-varying delay;

    机译:静态神经网络状态估计耗散时变时滞;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号