首页> 外文期刊>Neurocomputing >Locality-constrained linear coding based bi-layer model for multi-view facial expression recognition
【24h】

Locality-constrained linear coding based bi-layer model for multi-view facial expression recognition

机译:基于局部约束线性编码的多层模型的多视图人脸识别

获取原文
获取原文并翻译 | 示例

摘要

Multi-view facial expression recognition is a challenging and active research area in computer vision. In this paper, we propose a simple yet effective method, called the locality-constrained linear coding based bi-layer (LLCBL) model, to learn discriminative representation for multi-view facial expression recognition. To address the issue of large pose variations, locality-constrained linear coding is adopted to construct an overall bag-of-features model, which is then used to extract overall features as Well as estimate poses in the first layer. In the second layer, we establish one specific view-dependent model for each view, respectively. After the pose information of the facial image is known, we use the corresponding view-dependent model in the second layer to further extract features. By combining all the features in these two layers, we obtain a unified representation of the image. To evaluate the proposed approach, we conduct extensive experiments on both BU-3DFE and Multi-PIE databases. Experimental results show that our approach outperforms the state-of-the-art methods. (C) 2017 Elsevier B.V. All rights reserved.
机译:多视图面部表情识别是计算机视觉中一个充满挑战且活跃的研究领域。在本文中,我们提出了一种简单而有效的方法,称为局部约束线性编码双层(LLCBL)模型,以学习用于多视图面部表情识别的判别表示。为了解决较大的姿势变化问题,采用局域约束线性编码来构建总体特征包模型,然后将其用于提取总体特征以及在第一层中估算姿势。在第二层中,我们分别为每个视图建立一个特定于视图的模型。在知道了面部图像的姿势信息之后,我们在第二层中使用相应的依赖于视图的模型来进一步提取特征。通过组合这两层中的所有特征,我们获得了图像的统一表示。为了评估提出的方法,我们在BU-3DFE和Multi-PIE数据库上进行了广泛的实验。实验结果表明,我们的方法优于最新方法。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2017年第may24期|143-152|共10页
  • 作者单位

    Peking Univ, Sch EECS, Key Lab Machine Percept MOE, Beijing 100871, Peoples R China|Shanghai Jiao Tong Univ, Cooperat Medianet Innovat Ctr, Shanghai 200240, Peoples R China;

    Peking Univ, Sch EECS, Key Lab Machine Percept MOE, Beijing 100871, Peoples R China|Shanghai Jiao Tong Univ, Cooperat Medianet Innovat Ctr, Shanghai 200240, Peoples R China;

    Southeast Univ, Res Ctr Learning Sci, Key Lab Child Dev & Learning Sci MOE, Nanjing 210096, Jiangsu, Peoples R China;

    Peking Univ, Sch EECS, Key Lab Machine Percept MOE, Beijing 100871, Peoples R China|Shanghai Jiao Tong Univ, Cooperat Medianet Innovat Ctr, Shanghai 200240, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multi-view facial expression recognition; Locality-constrained linear coding based bi-layer model; Bag-of-features;

    机译:多视角人脸表情识别;基于局部约束线性编码的双层模型;特征包;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号