首页> 外文期刊>Neurocomputing >Distributed optimization of first-order discrete-time multi-agent systems with event-triggered communication
【24h】

Distributed optimization of first-order discrete-time multi-agent systems with event-triggered communication

机译:具有事件触发通信的一阶离散时间多主体系统的分布式优化

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on the event-triggered distributed subgradient algorithms for solving a class of convex optimization problems based on first-order discrete-time multi-agent systems over undirected networks. The communication process of the whole network is controlled by a set of trigger conditions monitored by each agent. The trigger condition and event-triggered distributed subgradient optimization algorithm for each agent are completely decentralized and just rest with each agent's and its neighboring agents' individual states at the event-triggered sequence of themselves as well as each agent's local objective function. At each time instant, each agent updates its state by employing its own objective function and the states collected from itself and its neighboring agents at their separate event-triggered time instants. A sufficient cohdition for ensuring the consensus and reaching the optimization solution is established under the condition that the undirected network topology is connected and the design parameters are properly designed. Theoretical analysis shows that the event-triggered distributed subgradient algorithm is capable of steering the whole network of agents asymptotically converge to an optimal solution of the convex optimization problem. Simulation results validate effectiveness of the introduced algorithm and demonstrate feasibility of the theoretical analysis.
机译:本文重点研究了基于事件触发的分布式次梯度算法,该算法解决了基于无向网络上一阶离散时间多主体系统的一类凸优化问题。整个网络的通信过程由每个代理监视的一组触发条件控制。每个智能体的触发条件和事件触发的分布式次梯度优化算法是完全分散的,并且仅取决于每个智能体及其相邻智能体各自的事件触发顺序以及每个智能体的局部目标函数的各个状态。在每个时刻,每个代理都通过使用其自己的目标函数以及在其独立的事件触发时刻从其自身及其相邻代理收集的状态来更新其状态。在无向网络拓扑已连接且设计参数设计正确的条件下,建立了确保共识和达到优化解决方案的充分条件。理论分析表明,事件触发的分布式次梯度算法能够将整个智能体网络渐近地收敛到凸优化问题的最优解。仿真结果验证了算法的有效性,证明了理论分析的可行性。

著录项

  • 来源
    《Neurocomputing》 |2017年第26期|255-263|共9页
  • 作者单位

    Southwest Univ, Coll Elect & Informat Engn, Chongqing Key Lab Nonlinear Circuits & Intelligen, Chongqing 400715, Peoples R China;

    Southwest Univ, Coll Elect & Informat Engn, Chongqing Key Lab Nonlinear Circuits & Intelligen, Chongqing 400715, Peoples R China|Chongqing Univ, State Key Lab Power Transmiss Equipment & Syst Se, Chongqing, Peoples R China;

    Guizhou Minzu Univ, Coll Data Sci & Informat Engn, Guiyang 550025, Peoples R China|Guizhou Minzu Univ, Coll Natl Culture & Cognit Sci, Guiyang 550025, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Consensus; Distributed optimization; Event-triggered control; Multi-agent systems; Discrete-time;

    机译:共识;分布式优化;事件触发控制;多智能体系统;离散时间;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号