首页> 外文期刊>Neurocomputing >Stochastic linear quadratic optimal control for model-free discrete-time systems based on Q-learning algorithm
【24h】

Stochastic linear quadratic optimal control for model-free discrete-time systems based on Q-learning algorithm

机译:基于Q学习算法的无模型离散时间系统的随机线性二次最优控制。

获取原文
获取原文并翻译 | 示例

摘要

Solving the stochastic linear quadratic (SLQ) optimal control problem generally needs full information about system dynamics. In this paper, a Q-learning iteration algorithm is adopted to solve the control problem for model-free discrete-time systems. Firstly, the condition of the well-posedness for the SLQ problem is given. In order to solve the SLQ problem, the stochastic problem is transformed into the deterministic one. Secondly, in the iteration process of Q-learning algorithm, the H matrix sequence and control gain matrix sequence are obtained without the knowledge of system parameters, and the convergence proof of two sequences is also given. Lastly, two simulation examples are supplied to explain the effectiveness of the Q-learning algorithm. (C) 2018 Elsevier B.V. All rights reserved.
机译:解决随机线性二次(SLQ)最优控制问题通常需要有关系统动力学的完整信息。本文采用一种Q学习迭代算法来解决无模型离散时间系统的控制问题。首先,给出了SLQ问题的适定性条件。为了解决SLQ问题,将随机问题转化为确定性问题。其次,在Q学习算法的迭代过程中,在不了解系统参数的情况下获得了H矩阵序列和控制增益矩阵序列,并给出了两个序列的收敛性证明。最后,提供了两个仿真示例来说明Q学习算法的有效性。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号