首页> 外文期刊>Neurocomputing >LSTM with sentence representations for document-level sentiment classification
【24h】

LSTM with sentence representations for document-level sentiment classification

机译:具有句子表示形式的LSTM用于文档级情感分类

获取原文
获取原文并翻译 | 示例

摘要

Recently, due to their ability to deal with sequences of different lengths, neural networks have achieved a great success on sentiment classification. It is widely used on sentiment classification. Especially long short-term memory networks. However, one of the remaining challenges is to model long texts to exploit the semantic relations between sentences in document-level sentiment classification. Existing Neural network models are not powerful enough to capture enough sentiment messages from relatively long timesteps. To address this problem, we propose a new neural network model (SR-LSTM) with two hidden layers. The first layer learns sentence vectors to represent semantics of sentences with long short term memory network, and in the second layer, the relations of sentences are encoded in document representation. Further, we also propose an approach to improve it which first clean datasets and remove sentences with less emotional polarity in datasets to have a better input for our model. The proposed models outperform the state-of-the-art models on three publicly available document-level review datasets. (C) 2018 Elsevier B.V. All rights reserved.
机译:近年来,由于神经网络能够处理不同长度的序列,因此在情感分类方面取得了巨大的成功。它广泛用于情感分类。特别是长短期记忆网络。但是,剩下的挑战之一是对长文本建模,以利用文档级情感分类中句子之间的语义关系。现有的神经网络模型不够强大,无法从相对较长的时间步长中捕获足够的情感消息。为了解决这个问题,我们提出了一个具有两个隐藏层的新神经网络模型(SR-LSTM)。第一层学习句子向量以表示具有长期短期记忆网络的句子的语义,第二层将句子的关系编码为文档表示形式。此外,我们还提出了一种改进方法,即先清理数据集并删除数据集中情感极性较小的句子,以为模型提供更好的输入。在三个公开可用的文档级审阅数据集上,拟议的模型优于最新模型。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第25期|49-57|共9页
  • 作者单位

    Tianjin Univ, Sch Comp Sci & Technol, Tianjin, Peoples R China;

    Tianjin Univ, Sch Comp Sci & Technol, Tianjin, Peoples R China;

    Tianjin Key Lab Cognit Comp & Applicat, Tianjin, Peoples R China;

    Tianjin Univ, Sch Comp Sci & Technol, Tianjin, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sentiment classification; LSTM; Neural networks; Sentence vectors;

    机译:情感分类;LSTM;神经网络;句子向量;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号