首页> 外文期刊>Neurocomputing >Object detection via deeply exploiting depth information
【24h】

Object detection via deeply exploiting depth information

机译:通过深入利用深度信息进行对象检测

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the issue on how to more effectively coordinate the depth with RGB aiming at boosting the performance of RGB-D object detection. Particularly, we investigate two primary ideas under the CNN model: property derivation and property fusion. Firstly, we propose that the depth can be utilized not only as a type of extra information besides RGB but also to derive more visual properties for comprehensively describing the objects of interest. Then a two-stage learning framework consisting of property derivation and fusion is constructed. Here the properties can be derived either from the provided color/depth or their pairs (e.g. the geometry contour). Secondly, we explore the fusion methods of different properties in feature learning, which is boiled down to, under the CNN model, from which layer the properties should be fused together. The analysis shows that different semantic properties should be learned separately and combined before passing into the final classifier. Actually, such a detection way is in accordance with the mechanism of the primary visual cortex (V-1) in brain. We experimentally evaluate the proposed method on the challenging datasets NYUD2 and SUN RGB-D, and both achieve remarkable performances that outperform the baselines. (C) 2018 Elsevier B.V. All rights reserved.
机译:本文讨论了有关如何更有效地与RGB协调深度以提高RGB-D对象检测性能的问题。特别是,我们研究了CNN模型下的两个主要思想:属性派生和属性融合。首先,我们建议深度不仅可以用作RGB之外的一种额外信息,还可以导出更多的视觉属性,以全面描述感兴趣的对象。然后构造了一个由属性推导和融合组成的两阶段学习框架。在这里,属性可以从提供的颜色/深度或它们的对(例如几何轮廓)中得出。其次,我们探索了特征学习中不同属性的融合方法,该方法归结为CNN模型下的属性应从哪一层融合在一起。分析表明,在进入最终分类器之前,应分别学习和组合不同的语义属性。实际上,这种检测方式与大脑中初级视觉皮层(V-1)的机制是一致的。我们在具有挑战性的数据集NYUD2和SUN RGB-D上实验性地评估了所提出的方法,并且均取得了优于基准的出色性能。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第19期|58-66|共9页
  • 作者

    Hou Saihui; Wang Zilei; Wu Feng;

  • 作者单位

    Univ Sci & Technol China, CAS Key Lab Technol Geospatial Informat Proc & Ap, Hefei 230027, Anhui, Peoples R China;

    Univ Sci & Technol China, CAS Key Lab Technol Geospatial Informat Proc & Ap, Hefei 230027, Anhui, Peoples R China;

    Univ Sci & Technol China, CAS Key Lab Technol Geospatial Informat Proc & Ap, Hefei 230027, Anhui, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Property derivation; Property fusion; RGB-D perception; Object detection;

    机译:属性推导;属性融合;RGB-D感知;目标检测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号