首页> 外文期刊>Neurocomputing >Adaptive neural network tracking control-based reinforcement learning for wheeled mobile robots with skidding and slipping
【24h】

Adaptive neural network tracking control-based reinforcement learning for wheeled mobile robots with skidding and slipping

机译:基于自适应神经网络跟踪控制的轮式滑行轮滑机器人强化学习

获取原文
获取原文并翻译 | 示例

摘要

To track the desired trajectories of the wheeled mobile robot (WMR) with time-varying forward direction, a reinforcement learning-based adaptive neural tracking algorithm is proposed for the nonlinear discrete-time (DT) dynamic system of the WMR with skidding and slipping. And, the typical model is transformed into an affine nonlinear DT system, the constraint of the coupling robot input torque is extended to pseudo dead zone (PDZ) control input. Three neural networks (NNs) are introduced as action NNs to approximate the unknown modeling item, the skidding and the slipping item and the PDZ item, whereas another NN is employed as critic NN to approximate the strategy utility function. Then, the critic and action NN adaptive laws are designed through the standard gradient-based adaptation method. The uniform ultimate boundedness (UUB) of all signals in the affine nonlinear DT WMR system can be ensured, while the tracking error converging to a small compact set by zero. Numerical simulations are conduced to validate the proposed method. (C) 2017 Elsevier B.V. All rights reserved.
机译:为了跟踪具有时变前进方向的轮式移动机器人(WMR)的期望轨迹,针对具有滑移和滑移的WMR非线性离散时间(DT)动态系统,提出了一种基于增强学习的自适应神经跟踪算法。并且,将典型模型转换为仿射非线性DT系统,将耦合机器人输入扭矩的约束扩展到伪死区(PDZ)控制输入。引入了三个神经网络(NN)作为动作NN,以近似未知的建模项,滑动项和滑动项以及PDZ项,而另一个NN被用作批判性NN来近似策略效用函数。然后,通过基于标准梯度的自适应方法,设计了批评者和行动神经网络自适应律。仿射非线性DT WMR系统中所有信号的统一最终有界度(UUB)可以得到保证,而跟踪误差收敛到零设置的小巧紧凑。数值模拟证明了该方法的有效性。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第29期|20-30|共11页
  • 作者单位

    Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150001, Heilongjiang, Peoples R China;

    Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150001, Heilongjiang, Peoples R China;

    Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150001, Heilongjiang, Peoples R China;

    Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150001, Heilongjiang, Peoples R China;

    Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150001, Heilongjiang, Peoples R China;

    Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150001, Heilongjiang, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Wheeled mobile robot; Adaptive tracking control; Reinforcement learning; Neural network;

    机译:轮式移动机器人自适应跟踪控制强化学习神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号