首页> 外文期刊>Neurocomputing >Gaussian derivative models and ensemble extreme learning machine for texture image classification
【24h】

Gaussian derivative models and ensemble extreme learning machine for texture image classification

机译:高斯导数模型和整体极限学习机进行纹理图像分类

获取原文
获取原文并翻译 | 示例

摘要

AbstractIn this paper, we propose an innovative classification method which combines texture features of images filtered by Gaussian derivative models with extreme learning machine (ELM). In the texture image classification, feature extraction is a very crucial step. Thusly, we use linear filters consisting of two Gaussian derivative models, difference of Gaussian (DOG) and difference of offset Gaussian (DOOG), to detect texture information of images. Besides, ensemble extreme learning machine (E2LM) is proposed to reduce the randomness of original ELM and used as the classifier in this paper. We evaluate the performance of both the texture features and the classifier E2LM by using three datasets: Brodatz album, VisTex database and Berkeley image segmentation database. Experimental results indicate that Gaussian derivative models are superior to Gabor filters, and E2LM outperforms the support vector machine (SVM) and ELM in classification accuracy.
机译: 摘要 在本文中,我们提出了一种创新的分类方法,该方法将高斯导数模型过滤的图像的纹理特征与极限学习机(ELM)相结合。在纹理图像分类中,特征提取是非常关键的一步。因此,我们使用由两个高斯导数模型,高斯差(DOG)和偏移高斯差(DOOG)组成的线性滤波器来检测图像的纹理信息。此外,提出了一种集成的极限学习机(E 2 LM)来减少原始ELM的随机性,并将其用作分类器。通过使用三个数据集:Brodatz相册,VisTex数据库和Berkeley图像分割数据库,我们评估了纹理特征和分类器E 2 LM的性能。实验结果表明,高斯导数模型优于Gabor滤波器,并且E 2 LM的分类精度优于支持向量机(SVM)和ELM。

著录项

  • 来源
    《Neurocomputing》 |2018年第14期|53-64|共12页
  • 作者单位

    School of Information Science and Engineering, Ocean University of China;

    College of Vocation Technology, Hebei Normal University;

    School of Information Science and Engineering, Ocean University of China;

    School of Information Science and Engineering, Ocean University of China;

    School of Information Science and Engineering, Ocean University of China;

    School of Mechanical and Electrical Engineering, China Jiliang University;

    School of Information Science and Engineering, Ocean University of China;

    Department of Mechanical and Industrial Engineering and the Iowa Informatics Initiative, The University of Iowa;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Gaussian derivative models; Extreme learning machine; Ensemble extreme learning machine; Texture classification; Gabor filters;

    机译:高斯导数模型极限学习机集合极限学习机纹理分类Gabor滤波器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号