首页> 外文期刊>Neural processing letters >Fault Diagnosis of Fuel System Based on Improved Extreme Learning Machine
【24h】

Fault Diagnosis of Fuel System Based on Improved Extreme Learning Machine

机译:基于改进的极端学习机的燃料系统故障诊断

获取原文
获取原文并翻译 | 示例

摘要

In this paper, extreme learning machine (ELM) method is used to classify the faults of fuel system. Although the learning speed of ELM is fast, its classification accuracy and generalization ability need to be improved. Bat Algorithm has a strong ability of global optimization. In order to make up for the deficiency of the ELM, this paper proposes a fault diagnosis model based on an improved bat algorithm to optimize the ELM. The experimental results show that the improved bat algorithm greatly improves the classification accuracy and generalization ability of the ELM, and verifies the validity of the proposed model.
机译:在本文中,极端学习机(ELM)方法用于对燃料系统的故障进行分类。 虽然ELM的学习速度快,但需要改善其分类准确性和泛化能力。 BAT算法具有强大的全局优化能力。 为了弥补榆树的缺陷,本文提出了一种基于改进的BAT算法来优化ELM的故障诊断模型。 实验结果表明,改进的BAT算法大大提高了ELM的分类准确性和泛化能力,并验证了所提出的模型的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号