首页> 外文期刊>Neural computation >The Functional Segregation and Integration Model: Mixture Model Representations of Consistent and Variable Group-Level Connectivity in fMRI
【24h】

The Functional Segregation and Integration Model: Mixture Model Representations of Consistent and Variable Group-Level Connectivity in fMRI

机译:功能隔离和集成模型:fMRI中一致和可变的组级连通性的混合模型表示

获取原文
获取原文并翻译 | 示例

摘要

The brain consists of specialized cortical regions that exchange information between each other, reflecting a combination of segregated (local) and integrated (distributed) processes that define brain function. Functional magnetic resonance imaging (fMRI) is widely used to characterize these functional relationships, although it is an ongoing challenge to develop robust, interpretable models for high-dimensional fMRI data. Gaussian mixture models (GMMs) are a powerful tool for parcellating the brain, based on the similarity of voxel time series. However, conventional GMMs have limited parametric flexibility: they only estimate segregated structure and do not model interregional functional connectivity, nor do they account for network variability across voxels or between subjects. To address these issues, this letter develops the functional segregation and integration model (FSIM). This extension of the GMM framework simultaneously estimates spatial clustering and the most consistent group functional connectivity structure. It also explicitly models network variability, based on voxel- and subject-specific network scaling profiles. We compared the FSIM to standard GMM in a predictive cross-validation framework and examined the importance of different model parameters, using both simulated and experimental resting-state data. The reliability of parcellations is not significantly altered by flexibility of the FSIM, whereas voxel- and subject-specific network scaling profiles significantly improve the ability to predict functional connectivity in independent test data. Moreover, the FSIM provides a set of interpretable parameters to characterize both consistent and variable aspects functional connectivity structure. As an example of its utility, we use subject-specific network profiles to identify brain regions where network expression predicts subject age in the experimental data. Thus, the FSIM is effective at summarizing functional connectivity structure in group-level fMRI, with applications in modeling the relationships between network variability and behavioral/demographic variables.
机译:大脑由相互之间交换信息的专用皮质区域组成,反映了定义大脑功能的分离(局部)过程和集成(分布式)过程的组合。功能磁共振成像(fMRI)被广泛用于表征这些功能关系,尽管为高维fMRI数据开发鲁棒的,可解释的模型一直是一个挑战。基于体素时间序列的相似性,高斯混合模型(GMM)是用于分解大脑的强大工具。但是,常规GMM的参数灵活性有限:它们仅估计分离的结构,并且不对区域间的功能连接建模,也不考虑跨体素或对象之间的网络可变性。为了解决这些问题,这封信开发了功能隔离和集成模型(FSIM)。 GMM框架的此扩展同时估计了空间聚类和最一致的组功能连接结构。它还基于体素和特定于对象的网络缩放配置文件显式地对网络可变性进行建模。我们在预测性交叉验证框架中将FSIM与标准GMM进行了比较,并使用模拟和实验静止状态数据检查了不同模型参数的重要性。 FSIM的灵活性不会显着改变分区的可靠性,而体素和特定于对象的网络缩放配置文件可显着提高预测独立测试数据中功能连通性的能力。此外,FSIM提供了一组可解释的参数来表征一致和可变方面的功能连接结构。作为其效用的一个示例,我们使用特定于受试者的网络配置文件来识别大脑区域,在该区域中网络表达会在实验数据中预测受试者的年龄。因此,FSIM可以有效地总结组级功能磁共振成像中的功能连接结构,并具有对网络可变性与行为/人口统计学变量之间的关系进行建模的应用。

著录项

  • 来源
    《Neural computation》 |2016年第10期|2250-2290|共41页
  • 作者单位

    Section for Cognitive Systems, DTU Compute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark, and Keenan Research Centre of the Li Ka Shing Knowledge Institute at St. Michael’s Hospital, Toronto ON, Canada M5B 1MB nchurchill.research@gmail.com;

    Section for Cognitive Systems, DTU Compute, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark, and Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, DK-2650 Hvidovre, Denmark kristoffer.madsen@gmail.com;

    Section for Cognitive Systems, DTU Compute, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark mmor@dtu.dk;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号