首页> 外文期刊>Nature >Crystal structure of the human centromeric nucleosome containing CENP-A
【24h】

Crystal structure of the human centromeric nucleosome containing CENP-A

机译:包含CENP-A的人类着丝粒核小体的晶体结构

获取原文
获取原文并翻译 | 示例
       

摘要

In eukaryotes, accurate chromosome segregation during mitosis and meiosis is coordinated by kinetochores, which are unique chromosomal sites for microtubule attachment~(1,2). Centromeres specify the kinetochore formation sites on individual chromosomes, and are epigenetically marked by the assembly of nucleo-somes containing the centromere-specific histone H3 variant, CENP-A~(3-12). Although the underlying mechanism is unclear, centromere inheritance is probably dictated by the architecture of the centromeric nucleosome. Here we report the crystal structure of the human centromeric nucleosome containing CENP-A and its cognate a-satellite DNA derivative (147 base pairs). In the human CENP-A nucleosome, the DNA is wrapped around the histone octamer, consisting of two each of histones H2A, H2B, H4 and CENP-A, in a left-handed orientation. However, unlike the canonical H3 nucleosome, only the central 121 base pairs of the DNA are visible. The thirteen base pairs from both ends of the DNA are invisible in the crystal structure, and the aN helix of CENP-A is shorter than that of H3, which is known to be important for the orientation of the DNA ends in the canonical H3 nucleosome13. A structural comparison of the CENP-A and H3 nucleo-somes revealed that CENP-A contains two extra amino acid residues (Arg80 and Gly81) in the loop 1 region, which is completely exposed to the solvent. Mutations of the CENP-A loop 1 residues reduced CENP-A retention at the centromeres in human cells. Therefore, the CENP-A loop 1 may function in stabilizing the centromeric chromatin containing CENP-A, possibly by providing a binding site for trans-acting factors. The structure provides the first atomic-resolution picture of the centromere-specific nucleosome.%“着丝点”是被含有CENP—A(一种着丝点特异rn性组蛋白H3变异体)的核小体组合体通过表观rn遗传方式标记的。Tachiwana等人报告了与rnDNA结合在一起的人“着丝点核小体”的晶体rn结构。他们发现了组蛋白的一个“八聚体”的rn一种标准排列,其中DNA被包裹在一个左手rn向的超级螺旋中。核小体的入口和出口处的rnDNA区域有灵活性,而/CENP-A中的一个回环rn则可帮助稳定其向“着丝点染色质”中的融合。rn作为含CENP-A的核小体的第一个已知结构,rn它可帮助澄清在文献中一直被争论的各种不rn同模型。
机译:在真核生物中,有丝分裂协调着有丝分裂和减数分裂过程中染色体的精确分离,这是微管附着的独特染色体位点[1,2]。着丝粒在单个染色体上指定了动线粒体形成位点,并在表观遗传学上以含有着丝粒特异性组蛋白H3变体CENP-A〜(3-12)的核小体的组装为标志。尽管尚不清楚其基本机制,但着丝粒遗传可能是由着丝粒核小体的结构决定的。在这里,我们报告包含CENP-A及其同源α卫星DNA衍生物(147个碱基对)的人类着丝粒核小体的晶体结构。在人CENP-A核小体中,DNA包裹在组蛋白八聚体周围,该组由左手方向的两个组蛋白H2A,H2B,H4和CENP-A组成。但是,与经典的H3核小体不同,仅可见DNA的中心121个碱基对。 DNA两端的13个碱基对在晶体结构中是不可见的,CENP-A的aN螺旋比H3的短,这对于规范H3核小体中DNA末端的定向很重要13。 。 CENP-A和H3核小体的结构比较表明,CENP-A在loop 1区域包含两个额外的氨基酸残基(Arg80和Gly81),该残基完全暴露于溶剂中。 CENP-A环1残基的突变减少了CENP-A在人细胞中着丝粒处的保留。因此,CENP-A环1可能通过提供反式作用因子的结合位点来稳定含有CENP-A的着丝粒染色质。该结构提供了着丝粒特异性核小体的第一张原子分辨率图。%“着丝点”是被包含CENP-A(一种着丝点特异rn性组蛋白H3变异体)的核小体组合体通过Tachiwana等人报告了与rnDNA结合在一起的人“着丝点核小体”的晶体rn结构。他们发现了组蛋白的一个“八聚体”的rn一种标准。核小小体的入口和出口处的rnDNA区域有突变,而/ CENP-A中的一个回环rn则可帮助稳定其向“着丝”作为含CENP-A的核小小体的第一个已知结构,rn它可帮助澄清在文献中一直被扭曲的各种不rn同模型。

著录项

  • 来源
    《Nature》 |2011年第7359期|p.232-235|共4页
  • 作者单位

    Laboratory of Structural Biology, Graduate School ot Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan;

    Laboratory of Structural Biology, Graduate School ot Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan;

    Laboratory of Structural Biology, Graduate School ot Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan;

    Laboratory of Structural Biology, Graduate School ot Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan;

    Laboratory of Structural Biology, Graduate School ot Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan;

    Laboratory of Structural Biology, Graduate School ot Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan;

    Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan;

    Division of Macromolecular Crystallography, Department of Supramolecular Biology, Graduate School of Nanobioscience,Yokohama City University, 1-7-29 Suehiro-cho,Tsurumi, Yokohama 230-0045, Japan;

    Division of Macromolecular Crystallography, Department of Supramolecular Biology, Graduate School of Nanobioscience,Yokohama City University, 1-7-29 Suehiro-cho,Tsurumi, Yokohama 230-0045, Japan;

    Protein Design Laboratory, Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan;

    Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan;

    Laboratory of Structural Biology, Graduate School ot Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:54:43

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号