首页> 外文期刊>Nature >Quantum gates and memory using microwave-dressed states
【24h】

Quantum gates and memory using microwave-dressed states

机译:使用微波修饰态的量子门和存储器

获取原文
获取原文并翻译 | 示例
       

摘要

Trapped atomic ions have been used successfully to demonstrate~1 basic elements of universal quantum information processing. Nevertheless, scaling up such methods to achieve large-scale, universal quantum information processing (or more specialized quantum simulations~(2-5)) remains challenging. The use of easily controllable and stable microwave sources, rather than complex laser systems(6'7), could remove obstacles to scalability. However, the microwave approach has drawbacks: it involves the use of magnetic-field-sensitive states, which shorten coherence times considerably, and requires large, stable magnetic field gradients. Here we show how to overcome both problems by using stationary atomic quantum states as qubits that are induced by microwave fields (that is, by dressing magnetic-field-sensitive states with microwave fields). This permits fast quantum logic, even in the presence of a small (effective) Lamb-Dicke parameter (and, therefore, moderate magnetic field gradients). We experimentally demonstrate the basic building blocks of this scheme, showing that the dressed states are long lived and that coherence times are increased by more than two orders of magnitude relative to those of bare magnetic-field-sensitive states. This improves the prospects of microwave-driven ion trap quantum information processing, and offers a route to extending coherence times in all systems that suffer from magnetic noise, such as neutral atoms, nitrogen-vacancy centres, quantum dots or circuit quantum electrodynamic systems.
机译:被困的原子离子已成功地证明了通用量子信息处理的〜1个基本元素。然而,扩大此类方法以实现大规模通用量子信息处理(或更专业的量子模拟〜(2-5))仍然具有挑战性。使用易于控制和稳定的微波源而不是复杂的激光系统(6'7),可以消除可扩展性的障碍。但是,微波方法有缺点:它涉及磁场敏感状态的使用,这会大大缩短相干时间,并且需要大而稳定的磁场梯度。在这里,我们展示了如何通过使用固定的原子量子态作为由微波场引起的量子位来克服这两个问题(即,通过用微波场修整对磁场敏感的态)。即使存在较小(有效)的Lamb-Dicke参数(因此,磁场梯度适中),这也可以实现快速量子逻辑。我们通过实验证明了该方案的基本组成部分,表明相对于裸露的磁场敏感状态,整平状态的寿命长,并且相干时间增加了两个数量级以上。这改善了微波驱动离子阱量子信息处理的前景,并为延长所有受磁噪声影响的系统(例如中性原子,氮空位中心,量子点或电路量子电动力学系统)的相干时间提供了一条途径。

著录项

  • 来源
    《Nature》 |2011年第7359期|p.185-188|共4页
  • 作者单位

    Faculty of Science and Technology, Department of Physics, University of Siegen, 57068 Siegen, Germany;

    Faculty of Science and Technology, Department of Physics, University of Siegen, 57068 Siegen, Germany;

    Faculty of Science and Technology, Department of Physics, University of Siegen, 57068 Siegen, Germany;

    Faculty of Science and Technology, Department of Physics, University of Siegen, 57068 Siegen, Germany;

    Institute for Theoretical Physics, University of Ulm, 89069 Ulm, Germany;

    Institute for Theoretical Physics, University of Ulm, 89069 Ulm, Germany;

    Faculty of Science and Technology, Department of Physics, University of Siegen, 57068 Siegen, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:54:43

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号