首页> 外文期刊>Nature >Microwave quantum logic gates for trapped ions
【24h】

Microwave quantum logic gates for trapped ions

机译:用于捕获离子的微波量子逻辑门

获取原文
获取原文并翻译 | 示例
       

摘要

Control over physical systems at the quantum level is important in fields as diverse as metrology, information processing, simulation and chemistry. For trapped atomic ions, the quantized motional and internal degrees of freedom can be coherently manipulated with laser light~(1-2). Similar control is difficult to achieve with radio-frequency or microwave radiation: the essential coupling between internal degrees of freedom and motion requires significant field changes over the extent of the atoms' motion~(2-3), but such changes are negligible at these frequencies for freely propagating fields. An exception is in the near field of microwave currents in structures smaller than the free-space wavelength4'5, where stronger gradients can be generated. Here we first manipulate coherently (on time-scales of 20 nanoseconds) the internal quantum states of ions held in a microfabricated trap. The controlling magnetic fields are generated by microwave currents in electrodes that are integrated into the trap structure. We also generate entanglement between the internal degrees of freedom of two atoms with a gate operation~(4,6-8) suitable for general quantum computation~9; the entangled state has a fidelity of 0.76(3), where the uncertainty denotes standard error of the mean. Our approach, which involves integrating the quantum control mechanism into the trapping device in a scalable manner, could be applied to quantum information processing~4, simulation~(5-10) and spectroscopy~(5-11).%用激光来相干操纵被束缚的原子离子是有可能rn的,但用射频或微波辐射来施加类似的控制却rn是困难的。两个小组在本期Nature上报告的新rn方法,使研究人员能够对被束缚的原子离子施rn加微波控制,以进行量子信息处理。Ospelkausrn等人介绍了种器件,它能利用由集成到个rn用微加工方式制成的离子阱中的电极所产生的rn磁场来施加微波控制。束缚在一个阱中的离子rn的内部量子状态可被相干控制,并且产生纠缠rn状态。在另一篇论文中,Timoney等人报告了rn一种基于向被束缚的离子施加微波脉冲的方rn法,该方法可将它们转变成个与外界扰动隔rn离的状态。这种方法显著延长了体系的相干时rn间,决定性地改善了由微波驱动的离子阱量子rn信息处理的前景。
机译:在量子水平上对物理系统的控制在诸如计量,信息处理,模拟和化学等众多领域中都很重要。对于捕获的原子离子,可以使用激光〜(1-2)来相干地控制量化的运动自由度和内部自由度。用射频或微波辐射很难实现类似的控制:内部自由度和运动之间的本质耦合要求在原子运动范围(2-3)范围内发生显着的场变化,但是在这种情况下这种变化可忽略不计自由传播场的频率。在小于自由空间波长4'5的结构中,微波电流的近场是一个例外,在该场中可以生成更强的梯度。在这里,我们首先相干地(在20纳秒的时间尺度上)操纵微细陷阱中所含离子的内部量子态。控制磁场是由集成在阱结构中的电极中的微波电流产生的。我们还通过适用于一般量子计算的门操作〜(4,6-8)生成两个原子的内部自由度之间的纠缠;纠缠态的保真度为0.76(3),其中不确定性表示平均值的标准误差。我们的方法涉及以可扩展的方式将量子控制机制集成到捕获设备中,可以应用于量子信息处理〜4,模拟〜(5-10)和光谱学〜(5-11)。%用激光来相干两个小组在本期自然上报告的新rn方法,使研究人员能够对被束缚的束缚,被操纵束束缚的原子离子是有可能的,但用射频或微波辐射来诱导类似的控制却rn是困难的。 Ospelkausrn等人介绍了种器件,它能利用由集成到一个rn用微加工方式制成的离子入射中的电极所产生的rn磁场来施加力的。在另一篇论文中,Timoney等人报告了一种基于向被束缚的离子干涉微波脉冲的微波控制。束缚在一个入射中的离子rn的内部量子状态可被相干控制,并且产生纠缠的状态。的方rn法,该方法可将其转变成一个与外部扰动隔rn离的状态。这种方法显着延长了体系的相干时rn间,决定性地改善了由微波驱动的离子量子量子信息处理的前景。

著录项

  • 来源
    《Nature》 |2011年第7359期|p.181-184|共4页
  • 作者单位

    Time and Frequency Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA Institute of Quantum Optics, Leibniz Universitat Hannover, Welfengarten 1,30167 Hannover, and PTB, Bundesallee 100,38116 Braunschweig, Germany;

    Time and Frequency Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA;

    Time and Frequency Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA;

    Time and Frequency Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA GTRI Georgia Tech, 400 10th Street NW, Atlanta, Georgia 30318, USA;

    Time and Frequency Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA GTRI Georgia Tech, 400 10th Street NW, Atlanta, Georgia 30318, USA;

    Time and Frequency Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA;

    Time and Frequency Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:54:43

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号