首页> 外文期刊>Nature >The great quantum conundrum
【24h】

The great quantum conundrum

机译:巨大的量子难题

获取原文
获取原文并翻译 | 示例
       

摘要

Some years ago, I lectured at a National Science Foundation summer workshop for high-school physics teachers. My subject was superconductivity. One of my co-instructors was Robert Laughlin. Scrawled across the top of Bob's first projector slide was the phrase, 'The Theory of Everything', and I thought, "Oh, boy, here we go, the standard model of particle physics - again". But underneath the title, he had written instead the many-body Schrodinger equation, summed over all the interactions between electrons and nuclei, and thus containing, once electron spin is included, the complete chemistry and physics of ordinary, terrestrial matter. Of course, the devil is always in the details, in this case the enormous summation over particle coordinates that is required to achieve a scale of, say, Avogadro's number. From this summation emerge life, the climate, smart-phones ... and high-temperature (high-T_c) superconductivity. And it is on this last that Jin et al.' (page 73 of this issue) and He et al.~2 (in an earlier study published in Science) make the latest effort to illuminate qualitatively the microscopic origins. They do this by attempting to unravel the enigmas of the electronic phase diagram of materials known as copper oxide perovskites. Within this phase diagram (Fig. 1) reside several quantum states, characterized by one or more 'quantum critical points', in rough analogy to the classical critical points characterizing the separation of the gas, liquid and solid states of macro-scooic matter. How the various chases in the electronic phase diagram compete or cooperate in generating the emergent superconducting state constitutes what I term the great quantum conundrum.;
机译:几年前,我在美国国家科学基金会夏季研讨会上为高中物理老师讲课。我的主题是超导。我的一位共同讲师是罗伯特·劳克林。鲍勃在第一张投影仪幻灯片的顶部草写着“万物理论”,我想:“哦,孩子,这是粒子物理学的标准模型-再一次。”但是在标题的下面,他改为写了多体薛定inger方程,总结了电子与原子核之间的所有相互作用,因此,一旦包括电子自旋,就包含了普通陆地物质的完整化学和物理学。当然,魔鬼总是存在于细节中,在这种情况下,要达到例如Avogadro数的比例,需要对粒子坐标进行巨大的求和。通过这种总结,可以得出生活,气候,智能手机……以及高温(高T_c)超导性。 Jin等人就在这最后一刻。 (本期第73页)和He et al。〜2(在《科学》上发表的较早研究)做出了最新的努力,以定性地阐明微观起源。他们通过试图揭开已知为氧化钙钙钛矿的材料的电子相图的谜团来做到这一点。在此相图(图1)中,存在着几个具有一个或多个“量子临界点”特征的量子态,这与表征大颗粒物质的气体,液体和固态分离的经典临界点大致相似。电子相图中的各种追踪如何竞争或合作以产生新兴的超导状态,这构成了我所说的巨大的量子难题。

著录项

  • 来源
    《Nature》 |2011年第7358期|p.37-39|共3页
  • 作者

    PAUL MICHAEL GRANT;

  • 作者单位

    W2AGZ Technologies and is an emeritus research staff member at the lBMAlmaden Research Center, San Jose, California 95120, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:54:41

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号