首页> 外文期刊>Naturwissenschaften >Biological Information Transfer Beyond the Genetic Code: The Sugar Code
【24h】

Biological Information Transfer Beyond the Genetic Code: The Sugar Code

机译:遗传密码以外的生物信息传递:糖法

获取原文
获取原文并翻译 | 示例
       

摘要

In the era of genetic engineering, cloning, and genome sequencing the focus of research on the genetic code has received an even further accentuation in the public eye. In attempting, however, to understand intra-and intercellular recognition processes comprehensively, the two biochemical dimensions established by nucleic acids and proteins are not sufficient to satisfactorily explain all molecular events in, for example, cell adhesion or routing. The consideration of further code systems is essential to bridge this gap. A third biochemical alphabet forming code words with an information storage capacity second to no other substance class in rather small units (words, sentences) is established by monosac-charides (letters). As hardware oligosaccharides surpass peptides by more than seven orders of magnitude in the theoretical ability to build isomers, when the total of conceivable hexamers is calculated. In addition to the sequence complexity, the use of magnetic resonance spectroscopy and molecular modeling has been instrumental in discovering that even small glycans can often reside in not only one but several distinct low-energy conformations (keys). Intriguingly, conformers can display notably different capacities to fit snugly into the binding site of nonhomolo-gous receptors (locks). This process, experimentally verified for two classes of lectins, is termed "differential conformer selection." It adds potential for shifts of the conformer equilibrium to modulate ligand properties dynamically and reversibly to the well-known changes in sequence (including anomeric positioning and linkage points) and in pattern of substitution, for example, by sulfation. In the intimate interplay with sugar receptors (lectins, enzymes, and antibodies) the message of coding units of the sugar code is deciphered. Their recognition will trigger post-binding signaling and the intended biological response. Knowledge about the driving forces for the molecular rendezvous, i.e., contributions of bi-dentate or cooperative hydrogen bonds, dispersion forces, stacking, and solvent rearrangement, will enable the design of high-affinity ligands or mimetics thereof. They embody clinical applications reaching from receptor localization in diagnostic pathology to cell type-selective targeting of drugs and inhibition of undesired cell adhesion in bacterial/viral infections, inflammation, or metastasis.
机译:在基因工程,克隆和基因组测序的时代,对遗传密码的研究重点已经引起了公众的更多关注。然而,在试图全面理解细胞内和细胞间识别过程中,由核酸和蛋白质建立的两个生化维度不足以令人满意地解释所有分子事件,例如细胞粘附或细胞凋亡。考虑进一步的代码系统对于弥合这一差距至关重要。通过单糖(字母)建立第三个生化字母,形成代码字,其信息存储容量仅次于其他物质类别(单词,句子),仅次于其他物质类别。当计算出可能的六聚体总数时,由于硬件寡糖在理论上构建异构体的能力上比肽高出七个数量级以上。除了序列复杂性外,磁共振波谱学和分子模型的使用还有助于发现即使是小的聚糖也常常不仅存在于一种而是几种不同的低能构象(键)中。有趣的是,构象异构体可以显示出显着不同的能力,以紧密地适应非同质性受体(锁)的结合位点。通过实验验证了两类凝集素的这一过程称为“差异构象异构体选择”。它增加了构象平衡的变化的可能性,以动态地和可逆地调节配体性质,例如通过硫酸化作用在序列(包括异头位置和连接点)和取代方式上的众所周知的变化。在与糖受体(凝集素,酶和抗体)的紧密相互作用中,糖代码的编码单元的信息被破译。它们的识别将触发结合后信号传导和预期的生物学反应。关于分子会合的驱动力的知识,即双齿或协作氢键的贡献,分散力,堆积和溶剂重排,将能够设计高亲和力配体或其模拟物。它们体现了从诊断病理学中的受体定位到药物的细胞类型选择性靶向以及抑制细菌/病毒感染,炎症或转移中不希望的细胞粘附的临床应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号