首页> 外文期刊>Naturwissenschaften >Enzymes Involved in the Aerobic Bacterial Degradation of N-Heteroaromatic Compounds: Molybdenum Hydroxylases and Ring-Opening 2,4-Dioxygenases
【24h】

Enzymes Involved in the Aerobic Bacterial Degradation of N-Heteroaromatic Compounds: Molybdenum Hydroxylases and Ring-Opening 2,4-Dioxygenases

机译:N-杂芳族化合物的好氧细菌降解涉及的酶:钼羟化酶和开环的2,4-二加氧酶

获取原文
获取原文并翻译 | 示例
       

摘要

Many N-heteroaromatic compounds are utilized by micro-organisms as a source of carbon (and nitrogen) and energy. The aerobic bacterial degradation of these growth substrates frequently involves several hydroxylation steps and subsequent dioxygenolytic cleavage of (di)hydroxy-substituted heteroaromatic intermediates to aliphatic metabolites which finally are channeled into central metabolic pathways. As a rule, the initial bacterial hydroxylation of a N-heteroaromatic compound is catalyzed by a molybdenum hydroxylase, which uses a water molecule as source of the incorporated oxygen. The enzyme's redox-active centers - the active site molybdenum ion coordinated to a distinct pyranopterin cofactor, two different [2Fe2S] centers, and in most cases, flavin adenine dinucleotide -transfer electrons from the N-heterocyclic substrate to an electron acceptor, which for many molybdenum hydroxylases is still unknown. Ring-opening 2,4-dioxygenases involved in the bacterial degradation of quinaldine and 1H-4-oxoquinoline catalyze the cleavage of two carbon-carbon bonds with concomitant formation of carbon monoxide. Since they contain neither a metal center nor an organic cofactor, and since they do not show any sequence similarity to known oxygenases, these unique dioxygenases form a separate enzyme family. Quite surprisingly, however, they appear to be structurally and mechanistically related to enzymes of the α/β hy-drolase fold superfamily. Microbial enzymes are a great resource for biotechnological applications. Microbial strains or their enzymes may be used for degradative (bioremediation) or synthetic (bio-transformation) purposes. Modern bioremediation or biotransfor-mation strategies may even involve microbial catalysts or strains designed by protein engineering or pathway engineering. Prerequisite for developing such modern tools of biotechnology is a comprehensive understanding of microbial metabolic pathways, of the structure and function of enzymes, and of the molecular mechanisms of biocatalysis.
机译:微生物利用许多N-杂芳族化合物作为碳(和氮)和能量的来源。这些生长底物的好氧细菌降解通常涉及几个羟基化步骤,以及随后的(二)羟基取代的杂芳族中间体被双氧分解为脂肪族代谢物的途径,脂肪族代谢物最终被引入中央代谢途径。通常,N-杂芳族化合物的初始细菌羟基化是由钼羟化酶催化的,该钼羟化酶使用水分子作为引入的氧的来源。该酶的氧化还原活性中心-活性位点的钼离子与一个不同的吡喃蝶呤辅因子配位,两个不同的[2Fe2S]中心,在大多数情况下,黄素腺嘌呤二核苷酸-将电子从N杂环底物转移至电子受体,许多钼羟化酶仍然未知。喹诺定和1H-4-氧代喹啉的细菌降解中涉及的开环2,4-二加氧酶催化两个碳-碳键的裂解并伴随一氧化碳的形成。由于它们既不包含金属中心也不包含有机辅因子,并且由于它们与已知的加氧酶不显示任何序列相似性,因此这些独特的双加氧酶形成了一个单独的酶家族。然而,非常令人惊讶的是,它们似乎与α/β水解酶折叠超家族的酶在结构和机械上相关。微生物酶是生物技术应用的重要资源。微生物菌株或其酶可用于降解(生物修复)或合成(生物转化)目的。现代生物修复或生物转化策略甚至可能涉及通过蛋白质工程或途径工程设计的微生物催化剂或菌株。开发这种现代生物技术工具的前提是对微生物代谢途径,酶的结构和功能以及生物催化的分子机制的全面理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号