首页> 外文期刊>Naturwissenschaften >Chemical interactions between amino acid and RNA: multiplicity of the levels of specificity explains origin of the genetic code
【24h】

Chemical interactions between amino acid and RNA: multiplicity of the levels of specificity explains origin of the genetic code

机译:氨基酸和RNA之间的化学相互作用:特异性水平的多样性解释了遗传密码的起源

获取原文
获取原文并翻译 | 示例
       

摘要

The emergence of the genetic code remains an enigma. Proposed mechanisms are based on random, historical, thermodynamic and natural selection. However, they introduce chance as a key factor for overcoming the difficulties encountered by the model. We propose here a model in which three successive levels of chemical specificity generated the nucleotide assignments of amino acids in the genetic code. The first level results from hydrophobic and stereospecific interactions between amino acids and short oligonucleotides (termed oligons). The second and third levels of specificity are determined by conditions of energy transfer from loaded oligons (amino acid-oligomer covalently linked) to formation of phosphodiester bond (second level of specificity) and peptidic bond (third level of specificity), while these reactions are catalyzed by RNA templates. This model is sustained by the relationships observed between dipole moments of the nucleotides (forming the anticodon) and reactivity of the amino acyl linkage of the loaded oligon. Moreover, analysis of modern tRNAs reveals that they were probably generated by loose duplication of the nucleotide sequence forming the oligons, after emergence of the 'genetic code.' Indeed, the similarity of nucleotide composition with that of the anticodon decreases with the tRNA domain's distance from the anticodon, but the acceptor stem is relatively more similar to the anticodon than other stems closer to it. This would be because energy transfer constraints that existed between anticodon and amino acid in prebiotic loaded oligonucleotides still affect the structures of modern tRNA acceptor stems. In the model presented, the genetic code is inherent to the most archaic 'molecular physiology' in protolife, even before emergence of a functional 'protein world.' Simple physical processes, in which a level of specificity is integrated in an emerging meta-structure expressing new properties, generate a parsimonious and realistic explanation of emergence of the genetic code.
机译:遗传密码的出现仍然是一个谜。建议的机制基于随机,历史,热力学和自然选择。但是,它们将机会作为克服模型遇到的困难的关键因素。我们在这里提出一个模型,其中三个连续的化学特异性水平在遗传密码中生成氨基酸的核苷酸分配。第一级是氨基酸和短寡核苷酸(称为寡核苷酸)之间的疏水和立体特异性相互作用的结果。第二个和第三个特异性水平取决于从负载的寡核苷酸(共价连接的氨基酸-低聚物)到形成磷酸二酯键(第二个特异性水平)和肽键(第三个特异性水平)的能量转移条件,而这些反应是RNA模板催化。通过观察到的核苷酸偶极矩(形成反密码子)与负载寡核苷酸的氨基酰基键的反应性之间的关系来维持该模型。此外,对现代tRNA的分析表明,它们可能是由“遗传密码”出现后,形成寡核苷酸的核苷酸序列的松弛重复产生的。确实,核苷酸组成与反密码子的相似性随tRNA结构域与反密码子的距离而降低,但是受体茎比反密码子更接近于其而更类似于反密码子。这是因为在益生元加载的寡核苷酸中,反密码子和氨基酸之间存在的能量转移限制仍然会影响现代tRNA受体茎的结构。在提出的模型中,即使在功能性的“蛋白质世界”出现之前,遗传密码也是原型生命中最古老的“分子生理”所固有的。简单的物理过程将特定的水平整合到表达新特性的新兴元结构中,从而产生了对遗传密码出现的简约和现实的解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号