首页> 外文期刊>Monthly Weather Review >Mesoscale Eddy Formation and Shock Features Associated with a Coastally Trapped Disturbance
【24h】

Mesoscale Eddy Formation and Shock Features Associated with a Coastally Trapped Disturbance

机译:中尺度涡流形成和激波特征与海岸陷波扰动相关

获取原文
获取原文并翻译 | 示例
       

摘要

On 28 August 2002, a visually striking sequence of events appeared in satellite imagery showing a coastally trapped disturbance (CTD) propagating northward along the coast of California against a northerly background flow. As a narrow tongue of coastal stratus indicative of the CTD propagated northward, a long, linear set of wave clouds developed ahead of the advancing CTD and angled away from the coast. The CTD and cloud lines moved northward over the next ~6 h and, as they approached Cape Mendocino (CM), the leading edge of the CTD clouds rolled up into a cyclonic mesoscale eddy—with the wave clouds being wrapped into the eddy. The CTD abruptly stalled and failed to round CM. Further, a second cyclonic mesoscale eddy formed southwest of Point Arena (PA). Although there has been extensive study of the propagation phase of CTDs, relatively little attention has been paid to the cessation of their propagation wherein mesoscale eddy development is not uncommon. Using the U.S. Navy's Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS), run in an operational manner, numerous observed features of this case are forecast, including: (ⅰ) the cold, shallow, cloud-filled, northward-propagating CTD; (ⅱ) the development, linear structure, orientation, and movement of an oblique hydraulic jump-like ("shock") feature; (ⅲ) a southerly wind shift associated with the CTD that precedes the advancing cloud tongue by several hours in both the observations and the model; (ⅳ) the modeled CTD that rounds PA, but fails to round CM; and (ⅴ) the formation of modeled cyclonic mesoscale eddies near both CM and PA. North of PA, however, a phase error develops in which the modeled CTD propagation is too slow. The model forecast cloud tongue behaves as a gravity current, and similar to earlier observational and modeling studies of CTDs, the model forecasts a bore propagating in the stratified atmosphere immediately above the marine boundary layer. Supercritical flow is forecast in the accelerating northerly flow rounding CM, and when the advancing bore interacts with this high Froude number region a pronounced oblique shock develops and the CTD stalls. Vorticity is enhanced along this shock due to vertical stretching and potential vorticity is generated within the shock. Additionally, juxtaposition of the CTD's southerly flow with the background northerly flow creates a vortex sheet-like shear zone along the offshore flank of the CTD, with the horizontal gradient of absolute vorticity changing signs, which is a necessary condition for classic barotropic instability.
机译:2002年8月28日,在卫星图像中出现了一系列视觉上引人注目的事件,这些事件显示了沿海被困扰动(CTD)沿着加利福尼亚海岸向北传播,并向北移动。随着指示CTD的沿海地层的狭窄舌头向北传播,在前进的CTD之前形成了长而线性的波云集,并与海岸成一定角度。 CTD和云线在接下来的约6小时内向北移动,并且当它们接近门多西诺角(CM)时,CTD云的前沿卷成旋风中尺度涡流,波云被包裹在涡流中。 CTD突然停顿,无法绕过CM。此外,第二个气旋中尺度涡在Point Arena(PA)西南形成。尽管已经对CTDs的传播阶段进行了广泛的研究,但在中尺度涡流发展并不罕见的情况下,对它们停止传播的关注却很少。使用以作战方式运行的美国海军耦合的海洋-大气中尺度预报系统(COAMPS),可以预测到这种情况的许多观测特征,包括:(ⅰ)冷,浅,云密布,向北传播的CTD; (ⅱ)斜液压跳跃状(“冲击”)特征的发展,线性结构,方向和运动; (ⅲ)在观测和模型中,与CTD相关的向南偏风,比前进的云舌提前数小时; (ⅳ)对PA进行四舍五入但对CM不进行四舍五入的建模CTD; (ⅴ)在CM和PA附近都形成了模拟的气旋中尺度涡。但是,在PA北部,会出现相位误差,其中建模的CTD传播太慢。该模型预测云舌表现为重力流,与早期的CTD观测和建模研究相似,该模型预测在海洋边界层正上方的分层大气中传播的钻孔。在加速的北向流动CM中,预计会出现超临界流,当前进的井眼与该高Froude数区域相互作用时,就会产生明显的倾斜冲击,而CTD停转。由于垂直拉伸,沿冲击波的涡度会增强,并且在冲击波内会产生潜在的涡旋。此外,将CTD的南向流与背景的北向流并置,会沿CTD的近海侧面形成一个涡旋状的剪切带,其绝对梯度会改变标志的水平梯度,这是经典正压不稳定的必要条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号