首页> 外文期刊>Molecular Physics:An International Journal at the Interface Between Chemistry and Physics >Thermodynamics of small systems embedded in a reservoir: a detailed analysis of finite size effects
【24h】

Thermodynamics of small systems embedded in a reservoir: a detailed analysis of finite size effects

机译:嵌入储层中的小型系统的热力学:有限尺寸效应的详细分析

获取原文
获取原文并翻译 | 示例
       

摘要

We present a detailed study on the finite size scaling behaviour of thermodynamic properties for small systems of particles embedded in a reservoir. Previously, we derived that the leading finite size effects of thermodynamic properties for small systems scale with the inverse of the linear length of the small system, and we showed how this can be used to describe systems in the thermodynamic limit [Chem. Phys. Lett. 504, 199 (2011)]. This approach takes into account an effective surface energy, as a result of the non-periodic boundaries of the small embedded system. Deviations from the linear behaviour occur when the small system becomes very small, i.e. smaller than three times the particle diameter in each direction. At this scale, so-called nook- and corner effects will become important. In this work, we present a detailed analysis to explain this behaviour. In addition, we present a model for the finite size scaling when the size of the small system is of the same order of magnitude as the reservoir. The developed theory is validated using molecular simulations of systems containing Lennard-Jones and WCA particles, and leads to significant improvements over our previous approach. Our approach eventually leads to an efficient method to compute the thermodynamic factor of macroscopic systems from finite size scaling, which is for example required for converting Fick and Maxwell-Stefan transport diffusivities.View full textDownload full textKeywordsnanothermodynamics, thermodynamics of small systems, molecular simulation, finite size scalingRelated var addthis_config = { ui_cobrand: "Taylor & Francis Online", services_compact: "citeulike,netvibes,twitter,technorati,delicious,linkedin,facebook,stumbleupon,digg,google,more", pubid: "ra-4dff56cd6bb1830b" }; Add to shortlist Link Permalink http://dx.doi.org/10.1080/00268976.2011.637524
机译:我们目前对嵌在储层中的小颗粒系统的热力学性质的有限尺寸缩放行为进行详细研究。以前,我们得出的结论是,对于小型系统,热力学特性的领先有限尺寸效应与小型系统的线性长度成反比,并且我们展示了如何将其用于描述热力学极限中的系统。物理来吧504,199(2011)]。由于小型嵌入式系统的非周期性边界,因此该方法考虑了有效的表面能。当小系统变得非常小时,即在每个方向上小于粒径的三倍时,就会发生与线性行为的偏差。在这种规模下,所谓的“角落效应”和“角落效应”将变得很重要。在这项工作中,我们提供了详细的分析来解释此行为。此外,当小型系统的大小与储层大小相同时,我们提出了一个有限大小缩放模型。使用包含Lennard-Jones和WCA粒子的系统的分子模拟对开发的理论进行了验证,并且对我们的先前方法进行了重大改进。我们的方法最终导致一种有效的方法,该方法可以从有限的尺寸缩放比例计算宏观系统的热力学因数,例如转换Fick和Maxwell-Stefan传输扩散率所必需的方法。有限大小缩放相关var addthis_config = {ui_cobrand:“泰勒和弗朗西斯在线”,servicescompact:“ citeulike,netvibes,twitter,technorati,delicious,linkedin,facebook,stumbleupon,digg,google,更多”,发布日期:“ ra-4dff56cd6bb1830b”} ;添加到候选列表链接永久链接http://dx.doi.org/10.1080/00268976.2011.637524

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号