首页> 外文期刊>Molecular Physics:An International Journal at the Interface Between Chemistry and Physics >A hybrid formalism combining fluctuating hydrodynamics and generalized Langevin dynamics for the simulation of nanoparticle thermal motion in an incompressible fluid medium
【24h】

A hybrid formalism combining fluctuating hydrodynamics and generalized Langevin dynamics for the simulation of nanoparticle thermal motion in an incompressible fluid medium

机译:结合波动流体力学和广义Langevin动力学的混合形式主义,用于模拟不可压缩流体介质中的纳米粒子热运动

获取原文
获取原文并翻译 | 示例
       

摘要

A novel hybrid scheme based on Markovian fluctuating hydrodynamics of the fluid and a non-Markovian Langevin dynamics with the Ornstein-Uhlenbeck noise perturbing the translational and rotational equations of motion of the nanoparticle is employed to study the thermal motion of a nanoparticle in an incompressible Newtonian fluid medium. A direct numerical simulation adopting an arbitrary Lagrangian-Eulerian (ALE) based finite element method (FEM) is employed in simulating the thermal motion of a particle suspended in the fluid confined in a cylindrical vessel. The results for thermal equilibrium between the particle and the fluid are validated by comparing the numerically predicted temperature of the nanoparticle with that obtained from the equipartition theorem. The nature of the hydrodynamic interactions is verified by comparing the velocity autocorrelation function (VACF) and mean squared displacement (MSD) with well-known analytical results. For nanoparticle motion in an incompressible fluid, the fluctuating hydrodynamics approach resolves the hydrodynamics correctly but does not impose the correct equipartition of energy based on the nanoparticle mass because of the added mass of the displaced fluid. In contrast, the Langevin approach with an appropriate memory is able to show the correct equipartition of energy, but not the correct short- and long-time hydrodynamic correlations. Using our hybrid approach presented here, we show for the first time, that we can simultaneously satisfy the equipartition theorem and the (short- and long-time) hydrodynamic correlations. In effect, this results in a thermostat that also simultaneously preserves the true hydrodynamic correlations. The significance of this result is that our new algorithm provides a robust computational approach to explore nanoparticle motion in arbitrary geometries and flow fields, while simultaneously enabling us to study carrier adhesion mediated by biological reactions (receptor-ligand interactions) at the vessel wall at a specified finite temperature.View full textDownload full textKeywordsOrnstein-Uhlenbeck process, non-Markovian approach, velocity autocorrelation, thermostat, hydrodynamic interactionsRelated var addthis_config = { ui_cobrand: "Taylor & Francis Online", services_compact: "citeulike,netvibes,twitter,technorati,delicious,linkedin,facebook,stumbleupon,digg,google,more", pubid: "ra-4dff56cd6bb1830b" }; Add to shortlist Link Permalink http://dx.doi.org/10.1080/00268976.2012.663510
机译:基于流体的马尔可夫涨落动力学和非马尔可夫朗格芬动力学,并结合扰动纳米粒子运动的平移和旋转方程的Ornstein-Uhlenbeck噪声的新颖混合方案,研究了不可压缩牛顿流体中纳米粒子的热运动。流体介质。直接数值模拟采用基于拉格朗日-欧拉(ALE)的有限元方法(FEM),来模拟悬浮在圆柱容器中的流体中悬浮颗粒的热运动。通过将数值预测的纳米颗粒的温度与从均分定理获得的温度进行比较,可以验证颗粒与流体之间的热平衡结果。通过将速度自相关函数(VACF)和均方位移(MSD)与众所周知的分析结果进行比较,可以验证流体动力相互作用的性质。对于不可压缩流体中的纳米粒子运动,波动的流体动力学方法可以正确地解决流体动力学问题,但是由于置换流体的附加质量,因此无法基于纳米颗粒质量施加正确的能量均分。相反,具有适当记忆的Langevin方法能够显示正确的能量均分,但不能显示正确的短时和长时间流体动力相关性。使用此处介绍的混合方法,我们首次展示了我们可以同时满足均分定理和(短期和长期)流体动力学相关性。实际上,这导致了一个恒温器,该恒温器还同时保留了真正的流体动力学相关性。该结果的意义在于,我们的新算法提供了一种鲁棒的计算方法,可探索纳米粒子在任意几何形状和流场中的运动,同时使我们能够研究在血管壁处由生物反应(受体-配体相互作用)介导的载体粘附。指定的有限温度。 ,linkedin,facebook,stumbleupon,digg,google,更多”,发布号:“ ra-4dff56cd6bb1830b”};添加到候选列表链接永久链接http://dx.doi.org/10.1080/00268976.2012.663510

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号