首页> 外文期刊>Modelling and simulation in engineering >A New Genetic Algorithm Methodology for Design Optimization of Truss Structures: Bipopulation-Based Genetic Algorithm with Enhanced Interval Search
【24h】

A New Genetic Algorithm Methodology for Design Optimization of Truss Structures: Bipopulation-Based Genetic Algorithm with Enhanced Interval Search

机译:桁架结构设计优化的一种新的遗传算法方法:基于双种群的增强间隔搜索遗传算法

获取原文
获取原文并翻译 | 示例

摘要

A new genetic algorithm (GA) methodology, Bipopulation-Based Genetic Algorithm with Enhanced Interval Search (BGAwEIS), is introduced and used to optimize the design of truss structures with various complexities. The results of BGAwEIS are compared with those obtained by the sequential genetic algorithm (SGA) utilizing a single population, a multipopulation-based genetic algorithm (MPGA) proposed for this study and other existing approaches presented in literature. This study has two goals: outlining BGAwEIS's fundamentals and evaluating the performances of BGAwEIS and MPGA. Consequently, it is demonstrated that MPGA shows a better performance than SGA taking advantage of multiple populations, but BGAwEIS explores promising solution regions more efficiently than MPGA by exploiting the feasible solutions. The performance of BGAwEIS is confirmed by better quality degree of its optimal designations compared to algorithms proposed here and described in literature.
机译:引入了一种新的遗传算法(GA)方法,即基于双种群的具有增强间隔搜索的遗传算法(BGAwEIS),并将其用于优化具有各种复杂性的桁架结构的设计。将BGAwEIS的结果与使用单个种群的顺序遗传算法(SGA),针对该研究提出的基于多种群的遗传算法(MPGA)以及文献中提出的其他现有方法所获得的结果进行比较。这项研究有两个目标:概述BGAwEIS的基础知识和评估BGAwEIS和MPGA的性能。因此,证明了MPGA可以利用多个种群显示出比SGA更好的性能,但是BGAwEIS通过开发可行的解决方案比MPGA更有效地探索了有前途的解决方案区域。与此处提出并在文献中描述的算法相比,BGAwEIS的性能由其最佳名称的更好质量等级所证实。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号